考纲要求1 .了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2 .了解两个互斥事件的概率加法公式.热点提示1 .以概率的意义和性质为重点,结合实际,多角度考查概率问题.2 .结合现实生活、概率的性质,对互斥事件和对立事件的考查成为新的热点.一、随机事件和确定事件1 .在条件 S 下,的事件,叫做相对于条件 S 的必然事件,简称必然事件.2 .在条件 S 下,的事件,叫做相对于条件 S 的不可能事件,简称不可能事件.一定会发生一定不会发生3 .和 统称为相对于条件 S的确定事件,简称确定事件.4 .在条件 S 下, 的事件,叫做相对于条件 S 的随机事件,简称随机事件.必然事件不可能事件可能发生也可能不发生二、频率与概率1 .在相同的条件 S 下重复 n 次试验,观察,某一事件 A 是否出现,称 n 次试验中事件 A 出现的次数, nA为事件 A 出现的频数,称事件 A 出现的比例为事件 A出现的频率.2 .对于给定的随机事件 A ,如果随着试验次数的增加,事件 A 发生的 fn(A) 稳定在某个 上,把这个记作 P(A) ,称为事件 A 的概率,简称为 A的概率.频率常数常数三、事件的关系与运算定义符号表示包含关系如果事件 A 发生,则事件 B 一定发生,这时称事件 B 事件 A( 或称事件 A 包含于事件 B) ( 或 A⊆B)相等关系若 B⊇A 且 A⊇B 并事件 ( 和事件 )若某事件发生当且仅当 A 发生或事件 B 发生,称此事件为事件 A 与事件 B 的 ( 或和事件 )A∪B( 或 A + B)交事件 ( 积事件 )若其事件发生当且仅当 且 发生,则称此事件为事件 A 与事件 B 的交事件A∩B( 或 AB)互斥事件若 A∩B 为不可能事件,则事件 A 与事件 B 互斥A∩B = Ø对立事件若 A∩B 为不可能事件, A∪B 为必然事件,那么称事件 A 与事件 B 互为对立事件A∩B = Ø P(A∪B) =P(A) + P(B) = 1B⊇A包含并事件事件 A 发生 事件 BA = B四、概率的几个基本性质1 .概率的取值范围: .2 .必然事件的概率 P(E) =.3 .不可能事件的概率 P(F) =.4 .互斥事件概率的加法公式.(1) 如果事件 A 与事件 B 互斥,则 P(A∪B) =(2) 若事件 B 与事件 A 互为对立事件,则 P(A) =0≤P(A)≤110P(A) +P(B) .1 -P(B) .1“.一人在打靶中连续射击两次,事件 至少有一次中”靶 的互斥事件是(...