1 初中数学知识内容概况公理和定理 一、线与角 1.两点之间,线段最短。 2.经过两点有一条直线,并且只有一条直线。 3. 等角的补角相等,等角的余角相等。 4.对顶角相等 5. 经过直线外或直线上一点,有且只有一条直线与已知直线垂直。 6. (1)经过已知直线外一点,有且只有一条直线与已知直线平行。 (2)如果两条直线都和第三条直线平行,那么这两条直线也平行. 7. 连接直线外一点与直线上各点的所有线段中,垂线段最短。 8. 平行线的判定: (1)同位角相等,两直线平行; (2)内错角相等,两直线平行; (3)同旁内角互补,两直线平行; (4)垂直于同一条直线的两条的直线互相平行. 9. 平行线的特征: (1)两直线平行,同位角相等。 (2)两直线平行,内错角相等。 2 (3)两直线平行,同旁内角互补。 10. 角平分线的性质:角平分线上的点到这个角的两边的距离相等. 角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上. 11. 线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等. 线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上. 二、三角形、多边形 12. 三角形中的有关公理、定理: (1)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的一个外角大于任何一个与它不相邻的内角;③三角形的外角和等于360°. (2)三角形内角和定理:三角形的内角和等于180°. (3)三角形的任何两边的和大于第三边 (4)三角形中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半. 13. 多边形中的有关公理、定理: (1)多边形的内角和定理:n 边形的内角和等于( n-2)×180°. (2)多边形的外角和定理:任意多边形的外角和都为 360°. 14.(1)如果图形关于某一直线对称,那么连结对应点的线段被 3 对称轴垂直平分. (2)轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。 15. 等腰三角形中的有关公理、定理: (1)等腰三角形的两个底角相等.(简写成“等边对等角”) (2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”) (3)等腰三角形的“三线合一”定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”. (4)等边三角形的各个内角都相等,并且每一个内角都等于60°. (...