电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

统计学教案习题04总体均数的估计和假设检验VIP免费

统计学教案习题04总体均数的估计和假设检验_第1页
1/8
统计学教案习题04总体均数的估计和假设检验_第2页
2/8
统计学教案习题04总体均数的估计和假设检验_第3页
3/8
第四章 总体均数的估计和假设检验 一、教学大纲要求 (一) 掌握内容 1. 抽样误差、可信区间的概念及计算; 2. 总体均数估计的方法; 3. 两组资料均数比较的方法,理解并记忆应用这些方法的前提条件; 4. 假设检验的基本原理、有关概念(如 I、II类错误)及注意事项。 (二) 熟悉内容 两样本方差齐性检验。 (三) 了解内容 1. t分布的图形与特征; 2. 总体方差不等时的两样本均数的比较; 3. 等效检验。 二、教学内容精要 (一) 基本概念 1. 抽样误差 抽样研究中,样本统计量与总体参数间的差别称为抽样误差(sampling error)。统计上用标准误(standard error,SE)来衡量抽样误差的大小。不同的统计量,标准误的表示方法不同,如均数的标准误用XS表示,率的标准误用 SP 表示,回归系数的标准误用 Sb 表示等等。均数的标准误与标准差的区别见表 4-1。 表 4-1 均数的标准误与标准差的区别 均数的标准误 标准差 意义 反映 X 的抽样误差大小 反映一组数据的离散情况 记法 X(样本估计值XS)  (样本估计值S) 计算 X=n XS=nS  =nX2)(  S=1)(2nXX 控制方法 增大 样 本 含量 可 减小 标 准误。 个体差异或自然变异,不能通过统计方法来控制。 2.可信区间 (1)定义、涵义:即按预先给定的概率确定的包含未知总体参数的可能范围。该范围称为总体参数的可信区间(confidence interv al,CI)。它的确切含义是:CI 是随机的,总体参数是固定的,所以,CI 包含总体参数的可能性是1- 。不能理解为 CI 是固定随机的,总体参数是随机固定的,总体参数落在CI 范围内可能性为 1- 。当0.05 时,称为 95%可信区间,记作95%CI。当0.01 时,称为 99%可信区间,记作99%CI。 (2)可信区间估计的优劣:一定要同时从可信度(即1- 的大小)与区间的宽度两方面来衡量。 (二) t 分布与正态分布 t分布与标准正态分布相比有以下特点:①都是单峰、对称分布;②t分布峰值较低,而尾部较高;③随自由 度增大,t 分布趋近与标准正态分布;当   时,t 分布的极限分布是标准正态分布。 (三)总体均数的估计 参数估计有点估计和区间估计两种方式。总体均数的估计,见表4-2。 表4-2 总体均数的估计 点估计 区间估计 意义 直接用样本统计量代替总体参数。 用统计量X 和xS 确定一个有概率意义的区间,以该区间具...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

统计学教案习题04总体均数的估计和假设检验

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部