电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

选修4-4复习课极坐标和参数方程VIP免费

选修4-4复习课极坐标和参数方程_第1页
1/28
选修4-4复习课极坐标和参数方程_第2页
2/28
选修4-4复习课极坐标和参数方程_第3页
3/28
本课的重点:(1)参数方程与普通方程的互化;一般要求是把参数方程化为普通方程;较高要求是利用设参求曲线的轨迹方程或研究某些最值问题;(2)极坐标与直角坐标的互化。重点方法:<1>消参的种种方法;<2>极坐标方程化为直角坐标方程的方法;<3>设参的方法。坐标系与参数方程在高考中根据我省的情况是选考内容,是7分的解答题之一,与不等式选讲和矩阵与变换等三个选修模块进行三选二解答,知识相对比较独立,与其他章节联系不大,容易拿分。根据不同的几何问题可以建立不同的坐标系,坐标系选取的恰当与否关系着解决平面内的点的坐标和线的方程的难易以及它们位置关系的数据确立。有些问题用极坐标系解答比较简单,而有些问题如果我们引入一个参数就可以使问题容易入手解答,计算简便。高考出现的题目往往是求曲线的极坐标方程、参数方程以及极坐标方程、参数方程与普通方程间的相互转化,并用极坐标方程、参数方程研究有关的距离问题,交点问题和位置关系的判定。我们把这一形式称为我们把这一形式称为直线参数方程的标准形式直线参数方程的标准形式,,其中其中tt表示直线表示直线ll上以定点上以定点MM00为起点,任意一点为起点,任意一点MM((xx,,yy))为终点的有向线段的数量为终点的有向线段的数量MM00MM。当点。当点MM在点在点MM00的上的上方时,方时,tt>0>0;当点;当点MM在点在点MM00的下方时,的下方时,tt<0<0;当点;当点MM与点与点MM00重合时,重合时,tt=0=0。很明显,我们也可以参数。很明显,我们也可以参数tt理解理解为以为以MM00为原点,直线为原点,直线ll向上的方向为正方向的数轴上向上的方向为正方向的数轴上点点MM的坐标,其长度单位与原直角坐标系的长度单位相的坐标,其长度单位与原直角坐标系的长度单位相同。同。用坐标的观点理解上述直线参数方程中的参数用坐标的观点理解上述直线参数方程中的参数tt,,在解决有关直线问题时,可以自然地将新旧知识联系起在解决有关直线问题时,可以自然地将新旧知识联系起来。来。过定点),(000yxM、倾斜角为的直线l的参数方程为sincos00tyytxx,(t为参数)1、一、参数t的有关性质对于上述直线l的参数方程,设l上两点A、B所对应的参数分别为tA、tB,则1.A、B两点之间的距离为||||BAttAB,特别地,A、B两点到点M0的距离分别为|tA|、|tB|。2.A、B两点的中点所对应的参数为2BAtt,若点M0是线段AB的中点,则tA+tB=0,反之亦然。说明:2.圆x2+y2=r2(r>0)的参数方程:3.圆(x-a)2+(y-b)2=r2的参数方程:其中参数的几何意义为:4.椭圆的参数方程为:22221(0)xyababcos()sinxryr为参数cos()sinxarybr为参数θ为圆心角cos()sinxayb为参数1.求直线415315xtyt(为参数t)被曲线2cos()4所截的弦长.考点一:参数方程,极坐标方程和直角坐标方程的互化考点二:了解参数方程和参数的意义.2.设方程sin3cos1yx,(θ为参数).表示的曲线为C,(1)求曲线C上的动点到原点O的距离的最小值(2)点P为曲线C上的动点,当|OP|最小时(O为坐标原点),求点P的坐标。考点三:能选择适当的参数写出直线、圆和椭圆的参数方程及极坐标方程3.已知椭圆C的极坐标方程为222sin4cos312,点F1、F2为其左,右焦点,直线l的参数方程为tytx22222(t为参数,t∈R).(Ⅰ)求直线l和曲线C的普通方程;(Ⅱ)求点F1、F2到直线l的距离之和.考点四:能给出简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的极坐标方程4设点P在曲线sin2上,点Q在曲线2cos上,求||PQ的最小值.【解析】以极点为原点,极轴所在直线为x轴建立直角坐标系.将曲线sin22与曲线2cos分别化为直角坐标方程,得直线方程2y,圆方程22(1)1xy.所以圆心(-1,0)到直线距离为2,|PQ|的最小值为2-1=11.直接求解例1.在极坐标系中,过圆=6cos的圆心,且垂直于极轴的直线的极坐标方程分析:把极坐标方程化为普通方程求出直线,分析:把极坐标方程化为普通方程求出直线...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

选修4-4复习课极坐标和参数方程

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部