❖ 1-3 平面机构具有确定的运动条件是什么? 答:必须使原动件数目等于机构的自由度数。 ❖ 1-5 试确定下列平面机构的自由度(图中绘有箭头的活动构件为原动件):a)推土机的推土机构;d)渣口堵塞机构;f)筛料机机构。 ❖ 解:a)推土机的推土机构 活动构件数n=5,低副PL=7(6 个转动副,一个移动副)高副PH=0。 F=3×5-2×7-0 =1 等于原动件数 ∴ 有确定运动 。 ❖ d) 渣口堵塞机构 由分析可知与杆 1 相连的滚子 2,属于局部自由度 ∴计算机构自由度时应排除。 则 n=6 PL=8(7 个转动副,1 个移动副) PH=1 ∴F=3×6-2×8-1=1 等于原动件数 f) 筛选机的筛料机构 由图:杆 1 和杆 2 焊在一起属于一体,与杆 3 相连的滚子 4 绕其中心的转动是一个局部自由度 ∴ n=6 PL=8(6 个转动副,2 个移动副) PH=1 ∴F=3×6-2×8-1=1 等于原动件数 3-5.已知一曲柄滑块机构的滑块行程 H=60mm,偏距 e=20mm,行程速比系数K=1.4,试确定曲柄和连杆的长度 l2 和 l3。(规定用作图法求之) 解:(1) 由行程速比系数K,求出极位夹角θ。 θ=180°×(K-1)/(K+1) =180°×(1.4-1) /(1.4+1)=30° 选比例尺 u=1:2,作图,可得: (2) 连接 C1 和 C2,并作 C1M 垂直于 C1C2,C1C2=H; (3) 作∠C1C2N=90°-θ=60°,C2N 与 C1M 相交于 P 点, 由图可见, ∠C1PC2=θ=30°; 4)作三角形 PC1C2 的外接圆 O,则曲柄的固定铰链中心 A 必在该圆上。 (5)作与 C1C2 线相距为 e 的平行线,与外接圆 O 交于的点即为 A 点,连接 AC1、AC2,则∠C1AC2=θ。 (6)因极限位置处曲柄与连杆共线,故 AC1=l3-l2, AC2= l3+l2,所以曲柄长度 l2=(AC2-AC1) /2; 由比例尺量得:AC1=28mm,AC2=82mm, 所以 l2=(82-28) /2=27mm。 (7)以 A 为圆心和 l2 为半径作圆,交 C1A 延线于 B1,交 C2A 于 B2,即得 B1C1=l3,由比例尺量得: l3=B1C1=56mm。 综上可知:曲柄长度 l2 为 27mm,连杆长度 l3 为 56mm。 3-6.已知一导杆机构的固定件长度 l1=1000 ㎜,行程速比系数K=1.5,确定曲柄长度 l2及导杆摆角φ。(解析法求解) 解:导杆机构的极位夹角 θ=180(K-1)/(K+1) =180°×(1.5-1)/(1.5+1) = 36° 所以 由图可得,导杆摆角φ=θ=36° 所以 曲柄长度 l1 = l1 × Sin(φ/2) =1000×Sin18°...