第一册 第一章 有理数 1.1 正数和负数 以前学过的0 以外的数前面加上负号“-”的书叫做负数。 以前学过的0以外的数叫做正数。 数0既不是正数也不是负数,0是正数与负数的分界。 在同一个问题中,分别用正数和负数表示的量具有相反的意义 1.2 有理数 1.2.1 有理数 正整数、0、负整数统称整数,正分数和负分数统称分数。 整数和分数统称有理数。 1.2.2 数轴 规定了原点、正方向、单位长度的直线叫做数轴。 数轴的作用:所有的有理数都可以用数轴上的点来表达。 注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。 ⑵同一根数轴,单位长度不能改变。 一般地,设是一个正数,则数轴上表示a 的点在原点的右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是a 个单位长度。 1.2.3 相反数 只有符号不同的两个数叫做互为相反数。 数轴上表示相反数的两个点关于原点对称。 在任意一个数前面添上“-”号,新的数就表示原数的相反数。 1.2.4 绝对值 一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值。 一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0 的绝对值是0。 在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。 比较有理数的大小:⑴正数大于0, 0 大于负数,正数大于负数。 ⑵两个负数,绝对值大的反而小。 1.3 有理数的加减法 1.3.1 有理数的加法 有理数的加法法则: ⑴同号两数相加,取相同的符号,并把绝对值相加。 ⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。 ⑶一个数同0 相加,仍得这个数。 两个数相加,交换加数的位置,和不变。 加法交换律:a+ b= b+ a 三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。 加法结合律:(a+ b)+ c= a+ (b+ c) 1.3.2 有理数的减法 有理数的减法可以转化为加法来进行。 有理数减法法则: 减去一个数,等于加这个数的相反数。 a- b= a+ (- b) 1.4 有理数的乘除法 1.4.1 有理数的乘法 有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数同0 相乘,都得0。 乘积是1 的两个数互为倒数。 几个不是0 的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。 两...