1 第一章 一元一次不等式和一元一次不等式组 一. 不等关系 1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式. 2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。 3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语. 非负数 <===> 大于等于 0(≥0) <===> 0 和正数 <===> 不小于 0 非正数 <===> 小于等于 0(≤0) <===> 0 和负数 <===> 不大于 0 二. 不等式的基本性质 1. 掌握不等式的基本性质,并会灵活运用: (1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即: 如果 a>b,那么 a+c>b+c, a-c>b-c. (2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即 如果 a>b,并且 c>0,那么 ac>bc, cbca . (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即: 如果 a>b,并且 c<0,那么 acb,那么 a-b 是正数;反过来,如果 a-b 是正数,那么 a>b; 如果 a=b,那么 a-b 等于 0;反过来,如果 a-b 等于 0,那么 a=b; 2 如果ab <===> a-b>0 a=b <===> a-b=0 a a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了. 三. 不等式的解集: 1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式. 2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同. 3. 不等式的解集在数轴上的表示: 用数轴表示不等式的解集时,要确定边界和方向: ①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左 四. 一元一次不等式: 1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式. 2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向. 3. 解一元一次不等式的步骤: ①去分母;②去括号;③移项;④合并同类项;⑤系数化为 1(不等号的改变问题) 4. 一元一次不等式基本情形为 ax>b(或 ax0 时,解为abx ;②当 a=0 时,且 b<0,则 x 取一切实数;当 a=0 3 时,且b≥0,则无解;③当a<0 时, 解为abx...