1 测试4 提公因式法 学习要求 能够用提公因式法把多项式进行因式分解. 一、填空题 1.因式分解是把一个______化为______的形式. 2.ax、ay、-ax 的公因式是______;6mn2、-2m2n3、4mn 的公因式是______. 3.因式分解a3-a2b=______. 二、选择题 4.下列各式变形中,是因式分解的是( ) A.a2-2ab+b2-1=(a-b)2-1 B.)11(22222xxxx C.(x+2)(x-2)=x2-4 D.x4-1=(x2+1)(x+1)(x-1) 5.将多项式-6x3y2 +3x2y2-12x2y3 分解因式时,应提取的公因式是( ) A.-3xy B.-3x2y C.-3x2y2 D.-3x3y3 6.多项式an-a3n+an+2 分解因式的结果是( ) A.an(1-a3+a2) B.an(-a2n+a2) C.an(1-a2n+a2) D.an(-a3+an) 三、计算题 7.x4-x3y 8.12ab+6b 9.5x2y+10xy2-15xy 10.3x(m-n)+2(m-n) 11.3(x-3)2-6(3-x) 12.y2(2x+1)+y(2x+1)2 13.y(x-y)2-(y-x)3 14.a2b(a-b)+3ab(a-b) 15.-2x2n-4x n 16.x(a-b)2n+xy(b-a)2n+1 四、解答题 17.应用简便方法计算: (1)2012-201 (2)4.3×199.8+7.6×199.8-1.9×199.8 2 (3)说明3200-4×3199+10×3198 能被 7 整除. 综合、运用、诊断 一、填空题 18.把下列各式因式分解: (1)-16a2b-8ab=______; (2)x3(x-y)2-x2(y-x)2=______. 19.在空白处填出适当的式子: (1)x(y-1)-( )=(y-1)(x+1); (2)cbab3294278( )(2a+3bc). 二、选择题 20.下列各式中,分解因式正确的是( ) A.-3x2y2+6xy2=-3xy2(x+2y) B.(m-n)3-2x(n-m)3=(m-n)(1-2x) C.2(a-b)2-(b-a)=(a-b)(2a-2b) D.am3-bm2-m=m(am2-bm-1) 21.如果多项式 x2+mx+n 可因式分解为(x+1)(x-2),则 m、n 的值为( ) A.m=1,n=2 B.m=-1,n=2 C.m=1,n=-2 D.m=-1,n=-2 22.(-2)10+(-2)11 等于( ) A.-210 B.-211 C.210 D.-2 三、解答题 23.已知 x,y 满足,13,62yxyx求 7y(x-3y)2-2(3y-x)3 的值. 24.已知 x+y=2,,21xy求 x(x+y)2(1-y)-x(y+x)2 的值 拓展、探究、思考 25.因式分解: (1)ax+ay+bx+by; (2)2ax+3am-10bx-15bm. 3 测试5 公式...