电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

方差分析与多重比较

方差分析与多重比较_第1页
1/44
方差分析与多重比较_第2页
2/44
方差分析与多重比较_第3页
3/44
75 第六章 方差分析 第五章所介绍的t 检验法适用于样本平均数与总体平均数及两样本平均数间的差异显著性检验,但在生产和科学研究中经常会遇到比较多个处理优劣的问题,即需进行多个平均数间的差异显著性检验。这时,若仍采用 t 检验法就不适宜了。这是因为: 1、检验过程烦琐 例如,一试验包含5 个处理,采用t 检验法要进行25C =10 次两两平均数的差异显著性检验;若有k 个处理,则要作k(k-1)/2 次类似的检验。 2、无统一的试验误差,误差估计的精确性和检验的灵敏性低 对同一试验的多个处理进行比较时,应该有一个统一的试验误差的估计值。若用t 检验法作两两比较,由于每次比较需计算一个21 xxS,故使得各次比较误差的估计不统一,同时没有充分利用资料所提供的信息而使误差估计的精确性降低,从而降低检验的灵敏性。例如,试验有5 个处理,每个处理重复6 次,共有30 个观测值。进行t 检验时,每次只能利用两个处理共12 个观测值估计试验误差,误差自由度为2(6-1)=10;若利用整个试验的30 个观测值估计试验误差,显然估计的精确性高,且误差自由度为5(6-1)=25。可见,在用t 检法进行检验时,由于估计误差的精确性低,误差自由度小,使检验的灵敏性降低,容易掩盖差异的显著性。 3、推断的可靠性低,检验的I 型错误率大 即使利用资料所提供的全部信息估计了试验误差,若用t 检验法进行多个处理平均数间的差异显著性检验,由于没有考虑相互比较的两个平均数的秩次问题,因而会增大犯I 型错误的概率,降低推断的可靠性。 由于上述原因,多个平均数的差异显著性检验不宜用t 检验,须采用方差分析法。 方差分析(analy sis of v ariance)是由英国统计学家R.A.Fisher 于 1923 年提出的。这种方法是将k 个处理的观测值作为一个整体看待,把观测值总变异的平方和及自由度分解为相应于不同变异来源的平方和及自由度,进而获得不同变异来源总体方差估计值;通过计算这些总体方差的估计值的适当比值,就能检验各样本所属总体平均数是否相等。方差分析实质上是关于观测值变异原因的数量分析,它在科学研究中应用十分广泛。 本章在讨论方差分析基本原理的基础上,重点介绍单因素试验资料及两因素试验资料的方差分析法。在此之前,先介绍几个常用术语。 1、试验指标(ex perimental index ) 为衡量试验结果的好坏或处理效应的高低,在试验中具体测定的性状或观测的项目称为试验指标。由于试验目的不同,选择的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

方差分析与多重比较

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部