电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

轴对称和轴对称图形课件VIP免费

轴对称和轴对称图形课件_第1页
1/43
轴对称和轴对称图形课件_第2页
2/43
轴对称和轴对称图形课件_第3页
3/43
欣赏精美图片中国戏曲脸谱李天王巨灵神张飞盖书文李逵北京天安门印度泰姬陵法国艾菲尔铁塔加拿大国旗澳门特区区徽脸谱艺术车标设计面对生活中这些美丽的图片,你是否强烈地感受强烈地感受到美就在我们身边!这是一种怎样的美呢?请谈谈你的感想?请你想一想:将上图中的每一个图形沿某条直线折叠,直线两旁的部分能完全重合重合吗?要要仔仔细细观观察察哦!哦!轴对称图形定义:如果沿一条直线折叠,直线两旁的部分能够_________,那么这个图形就叫做____________.这条直线叫做__________.对称轴一个平面图形完全重合轴对称图形对称轴对称轴轴对称图形轴对称图形练习:下面的图形是轴对称图形吗?如果是,你能指出它的对称轴吗?是是是是不是是猜猜看?美3A图形形状是否轴对称图形对称轴的数量长方形正方形平行四边形等腰三角形圆形线段角是是是是不是241无数0是是21想一想:一辆汽车的车牌在水中的倒影如图所示,你能确定该车车牌的号码吗?如图是在平面镜中看的钟表,你能告诉老师现在几点了么?议一议1234567如图:你能求出这七个角的和吗?下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后在空白处填上恰当的图形.ABCDEFGH练一练:下面的字母哪些是轴对称图形?找出对称轴?在艺术字中,有些汉字是轴对称的,你能猜一猜下列是哪些字的一半吗?猜字游戏把一圆形纸片两次对折后,得到把一圆形纸片两次对折后,得到右图,然后沿虚线剪开,得到两右图,然后沿虚线剪开,得到两部分,其中一部分展开后的平面部分,其中一部分展开后的平面图形是图形是()()ABCDB试一试下面的文字中有轴对称图形吗?六中吉祥已知对称轴l和一个点A,如何画出点A关于l的对称点A′?AA′Ol尝试探究作法:过点A作直线l的垂线在垂线上截取OA’=OA,垂足为点O,点A’就是点A关于直线l的对称点.如何画线段AB关于直线l的对称线段A′B′?lABA’B’作法:1、过点A作直线l的垂线,垂足为点O,在垂线上截OA’=OA,点A’就是点A关于直线l的对称点;2、类似地,作出点B关于直线l的对称点B’;3、连接A’B’.∴线段A’B’即为所求。1、过点A作直线l的垂线,垂足为点O,在垂线上截取OA’=OA,例1:如图,已知△ABC和直线l,作出与△ABC关于直线l对称的图形。BAC分析:△ABC可以由三个顶点的位置确定,只要能分别作出这三个顶点关于直线l的对称点,连接这些对称点,就能得到要作的图形。l作法:2、类似地,分别作出点B、C关于直线l的对称点B’、C’;3、连接A’B’、B’C’、C’A’。∴△A’B’C’即为所求。A’B’C’O点A’就是点A关于直线l的对称点;例1:如图,已知△ABC和直线l,作出与△ABC关于直线l对称的图形。BACBAClB’C’BACA’B’∴△AB’C’即为所求。作法:1、分别作出点B、C关于直线l的对称点B’、C’;2、连接AB’、B’C’、C’A。BACl作法:1、分别作出点A、B关于直线l的对称点A’、B’;2、连接A’B’、B’C、CA’。∴△A’B’C即为所求。平面内两个如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,轴对称轴对称、对称轴、对称点ABCD这条直线叫做对称轴。折叠重合的两点叫对应点也叫对称点。ABCDEF对称点对称轴L思考:根据你对轴对称的理解,你能发现轴对称有哪些性质特征?o1o2o3下面每对图形呢?观察下面的图形,你能发现它们有什么共同的特征吗?你能找出图中的对称轴和一些对称点吗?ABCDMNPQ轴对称图形轴对称一分为二合二为一讨论:轴对称与轴对称图形有什么区别与联系?轴对称与轴对称图形有什么区别与联系?区别:联系:轴对称是指两个图形能沿对称轴折叠后重合,而轴对称图形是指一个图形的两部分沿对称轴折叠后能完全重合。都有对称轴、对称点和两部分完全重合的特性。请你举出生活中的轴对称和轴对称图形?轴对称图形:圆、正方形、长方形、菱形、等腰三角形、等边三角形、等腰梯形、线段、角……注意:平行四边形不是轴对称图形轴对称:两扇大门、一双鞋、两只手、同一人的两脸颊、物体和镜中的像……要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?你...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

轴对称和轴对称图形课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部