电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

第五章相关性分析

第五章相关性分析_第1页
1/17
第五章相关性分析_第2页
2/17
第五章相关性分析_第3页
3/17
第五章 相关性分析 在对研究对象的综合属性进行评价时,往往涉及到许多变量指标。它们有的有一定的信息重叠性,有的有一定的关联性。为了找出影响事物属性的关键本质变量指标,我们首先就需要剔除重叠性和关联性等,这就是所谓的变量之间的相关性分析。这种相关性分析主要包括:(1 )两个变量的相关性分析;(2 )多个变量的整体相关性(广义相关系数)分析;(3 )一个变量与其余多个变量(一组变量)的复相关性分析;(4 )两个变量在给定一组变量条件下的偏相关性分析;(5 )两组变量(每组为多元变量)之间的典型相关性分析。 第一节 引言 在研究、分析、评价实际问题时,研究对象属性往往由多元变量指标刻画。但是,有些指标太多,有些指标包含了部分重叠信息,有些指标强烈地依赖于其它指标,这时需要对指标进行筛选以确定不相关(或者相关性不大)的、包含最多研究对象信息的、指标维数尽量小的主要指标变量。指标筛选的主要办法就是指标的相关性分析。同时,相关性分析也是数据多元分析的重要技术手段。 变量间的相关性涉及到变量或变量组之间的多种相关性,下面分别阐述。 (1 )两变量间的相关性。最简单的就是这种两个变量之间的相关性,通常定义一个相关系数来量化两个变量之间的相关程度。它常被用于衡量两个指标间的相关性或相似性,如在地震勘探中,要对比两个地震记录波形的相似性;在无线电技术中,要将接受信号与某已知信号对比,根据两者之间的相似性做出某种判断;更一般地,当我们观察到多个变量时,要分析多个变量间的相似性,进行根据一定的标准,对这些变量进行筛选。因此,两个变量之间的相关性是变量间相关性分析的基础。 (2 )多元变量的整体相关性。如果考察的变量是一组变量(多于两个变量),则需要考察这一组变量总体的相关性,也可称为多元整体相关性分析。对于一组变量的多元整体相关性常常采用广义相关系数(相对于前面的两个变量间的相关系数而言)来量化,有时也将广义相关系数称为混合相关系数。例如,对于获得的描述研究对象属性的多个变量指标,首先需要知道的就是这组变量整体相关吗?从而确定是否需要对变量之间的相关性做进一步的其它相关性分析。 (3 )复相关性。复相关性分析指多元变量组中某一变量与其余剩余变量之间的相关性的分析,其量化指标是复相关系数(或多重相关系数)。这种相关性显然不同于多于变量整体相关性,涉及的是一个变量与一组变量之间的相关性问题。 (4 ...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

第五章相关性分析

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部