电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

abaqus接触动力学分析

abaqus接触动力学分析_第1页
1/11
abaqus接触动力学分析_第2页
2/11
abaqus接触动力学分析_第3页
3/11
部件模态综合法 随着科学和生产的发展,特别是航空、航天事业的发展,越来越多的大型复杂结构被采用,这使得建模和求解都比较困难。一方面,一个复杂结构势必引入较多的自由度,形成高维的动力学方程,使一般的计算机在内存和求解速度方面都难以胜任,更何况一般的工程问题主要关心的是较低阶的模态。仅为了获取少数的几个模态,必须为求解高维方程付出巨大的代价也是不合适的。另一方面,正是由于结构的庞大和复杂,一个完整的结构往往不是在同一地区生产完成的,可能一个结构的各个主要零部件不得不由不同的地区、不同的厂家生产。而且由于试验条件的限制只能进行部件的模态实验,而无法对整体结构进行模态实验。 针对这些主要的问题,为了获得大型、复杂结构的整体模态参数,于是发展了部件模态综合法。 部件模态综合法又叫子结构耦合法。它的基本思想是按工程观点或结构的几何轮廓,并遵循某些原则要求,把完整的结构进行人为抽象肢解成若干个子结构(或部件);首先对子结构(或部件)进行模态分析,然后经由各种方案,把它们的主要模态信息(常为低阶主模态信息)予以保留,并借以综合完整结构的主要模态特征。它的主要有点是,可以通过求解若干小尺寸结构的特征问题来代替直接求解大型特征值问题。同时对各个子结构可分别使用各种适宜的数学模型和计算程序,也可以借助试验的方法来获得他们的主要模态信息。 对于自由振动方程在数学上讲就是固有(特征)值方程。特征值方程的解不仅给出了特征值,即结构的自振频率和特征矢量——振兴或模态,而且还能使结构在动力载荷作用下的运动方程解耦,即所谓的振型分解法或叫振型叠加法。因此,特征值问题的求解技术,对于解决结构振动问题来说吧,是非常重要的。 考虑阻尼的振型叠加法 振型叠加法的定义:将结构各阶振型作为广义坐标系,求出对应于各阶振动的结构内力和位移,经叠加后确定结构总响应的方法。 振型叠加法的使用条件:  (1 )系统应该是线性的:线性材料特性,无接触条件,无非线性几何效应。  (2 )响应应该只受较少的频率支配。当响应中各频率成分增加时,例如撞击和冲击问题,振型叠加技术的有效性将大大降低。  (3 )载荷的主要频率应在所提取的频率范围内,以确保对载荷的描述足够精确。  (4 )由于任何突然加载所产生的初始加速度应该能用特征模态精确描述。  (5 )系统的阻尼不能过大。 所以本种方法不适。 如果想在分析中模拟非线性,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

abaqus接触动力学分析

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部