电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

代数式的变形的技巧

代数式的变形的技巧_第1页
1/6
代数式的变形的技巧_第2页
2/6
代数式的变形的技巧_第3页
3/6
代数式的变形的技巧 第 1 页 共 6 页 代数式的变形的技巧 在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形,现结合实例对代数式的基本变形,如配方、因式分解、换元、设参、拆项与逐步合并等方法作初步介绍. 1.配方 在实数范围内,配方的目的就是为了发现题中的隐含条件,以便利用实数的性质来解题. 例1 设a、b、c、d 都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整数的平方和,其形式是______. 解mn=(a2+b2)(c2+d2) =a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2 =(ac-bd)2+(ad+bc)2, 所以,mn 的形式为(ac+bd)2+(ad-bc)2或(ac-bd)2+(ad+bc)2. 例2 设x、y、z 为实数,且(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2. 求的值. 解 将条件化简成 2x2+2y2+2z2-2xy-2x2-2yz=0 ∴ (x-y)2+(x-z)2+(y-z)2=0 ∴ x=y=z,∴原式=1. 2.因式分解 前面已介绍过因式分解的各种典型方法,下面再举几个应用方面的例子. 例3 如果 a 是x2-3x+1=0 的根,试求的值. 解 a 为x2-3x+1=0 的根, ∴ a2-3a+1=0,,且 =1. 原式 说明:这里只对所求式分子进行因式分解,避免了解方程和复杂的计算. 代数式的变形的技巧 第 2 页 共 6 页 3.换元 换元使复杂的问题变得简洁明了. 例4 设a+b+c=3m,求证: (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0. 证明 令p=m-a,q=m-b,r=m-c 则 p+q+r=0. P3+q3+r3-3pqr=(p+q+r)(p2+q2+r2-pq-qr-rp)=0 ∴p3+q3+r3-3pqr=0 即 (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0 例5 若,试比较 A、B 的大小. 解 设 则 . 2x>y ∴2x-y>0, 又 y>0, 可知 ∴A>B. 4.设参 当已知条件以连比的形式出现时,可引进一个比例系数来表示这个连比. 例6 若求x+y+z 的值. 解 令 则有 x=k(a-b), y=(b-c)k z=(c-a)k, ∴x+y+z=(a-b)k+(b-c)k+(c-a)k=0. 例7 已知 a、b、c 为非负实数,且 a2+b2+c2=1, ,求a+b+c 的值. 解 设 a+b+c=k 则a+b=k-c,b+c=k-a,a+c=k-b. 由条件知 代数式的变形的技巧 第 3 页 共 6 页 即 ∴a2k-a3+b2k-b3+c2k-c3=-3abc, ∴(a2+b2+c2)k+3abc=a3+b3+c3. a2+b2+c2=1, ∴k=a3+b3+c3-3abc =(a+b)3-3a2b-3ab2+c3-3abc =(a+b+c)[(a+b)2+c2-(a+b)c]-3ab(a+b+c), =(a+b+c)(a2+b2+c2-ab-bc-ca), ∴k=k(a2+b2+c2-ab-bc-ac), ∴k(a2+b2+c2-ab-bc-ca-1)=0, ∴k(-ab-bc-ac)=0. ...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

代数式的变形的技巧

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部