反激式变换器(Fly back Conv erter)的工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于 CCM 模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM 模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 二.反激式变换器(Fly back Conv erter)的工作原理 1).反激式变换器的电路结构如图一. 2).当开关管 Q1 导通时,其等效电路如图二(a)及在导通时初级电流连续时的波形,磁化曲线如图二(b). 当Q1 导通,T1 之初级线圈渐渐地会有初级电流流过,能量就会储存在其中.由于变压器初级与次级侧之线圈极性是相反的,因此二极管D1 不会导通,输出功率则由Co 来提供.此时变压器相当于一个串联电感Lp,初级线圈电流Ip 可以表示为: Vdc=Lp*dip/dt 此时变压器磁芯之磁通密度会从剩磁 Br 增加到工作峰值 Bw . 3.当Q1 截止时, 其等效电路如图三(a)及在截止时次级电流波形,磁化曲线如图三(b). 当Q1 截止时,变压器之安匝数(Ampere-Turns NI)不会改变,因为∆B 并没有相对的改变.当∆B 向负的方向改变时(即从Bw 降低到Br),在变压器所有线圈之电压极性将会反转,并使D1 导通,也就是说储存在变压器中的能量会经D1,传递到Co 和负载上. 此时次级线圈两端电压为:Vs(t)=Vo+Vf (Vf 为二极管D1 的压降). 次级线圈电流: Lp=(Np/Ns)2*Ls (Ls 为次级线圈电感量) 由于变压器能量没有完全转移,在下一次导通时,还有能量储存在变压器中,次级电流并没有降低到0 值,因此称为连续电流模式或不完全能量传递模式 (CCM). 三.CCM 模式下反激变压器设计的步骤 1. 确定电源规格. 1. .输入电压范围 Vin=85—265Vac; 2. .输出电压/负载电流:Vout1=5V/10A,Vout2=12V/1A; 3. .变压器的效率 ŋ=0.90 2. 工作频率和最大占空比确定. 取:工作频率fosc=100KHz, 最大占空比Dmax=0.45. T=1/fosc=10us.Ton(max)=0.45*10=4.5us Toff=10-4.5=5.5us. 3. 计算变...