精品文档---下载后可任意编辑一个二阶锥规划的光滑化方法的开题报告一、讨论背景与意义随着现代工业、交通与信息技术的快速进展,为了应对复杂问题带来的挑战,人们不断寻求并提出新的优化方案和算法。而二阶锥规划(Second-Order Cone Programming, SOCP) 技术由于其具有良好的求解效果和良好的理论特性等优点,已经成为优化领域中的一个重要分支。但是,SOCP 面对的问题也逐渐变得越来越复杂, 光滑化是解决这类问题的有效方法之一,将“ 非光滑” 问题转化为更易求解的最优性问题。因此,讨论 SOCP 的光滑化方法,发现和设计更有效的光滑化方法,不仅可以更好地解决现实问题,而且有很好的理论指导意义,因而具有重要的讨论意义和应用价值。二、讨论内容和方法讨论的内容是针对二阶锥规划的光滑化方法,探究其优化模型、约束和目标函数等不同方面的特点,并对其进行充分的分析和讨论。同时,本讨论将会使用相关的算法和数学工具,如 无穷小分析、凸分析、广义微分等方法来设计出更加合理有效的光滑化方法。三、论文结构安排本文的结构主要分三个部分,分别是:引言、光滑化二阶锥规划方法的理论讨论和算法实现。其中,引言主要介绍讨论背景与意义,探究二阶锥规划的现状及其面临的问题;其次,光滑化二阶锥规划方法的理论讨论起主要是对二阶锥规划模型、约束和目标函数进行分类和分析,然后将无穷小分析和凸分析等技术带入到讨论中,加倍考虑了设计光滑化算法所时要关注的各种优化问题。最后通过一些光滑化的实例加以说明,使得光滑化二阶锥规划的方法和算法更能简介、清楚地呈现出来。