精品文档---下载后可任意编辑(完成时间 120 分钟,满分 150 分)一、填空题 (每小题 4 分,满分 56 分)1.设集合,则▲.2.方程lg x+lg( x+3)=1 的解是x= ▲.3.设函数,那么▲.4.一个与球心距离为 1 的平面截球所得的圆的面积为,则球的表面积为▲.5.已知直线与圆O : x2+ y2=1相交于、两点,|⃗AB|=√3,则·⃗OB =▲.6.若实数x , y 满足条件{x+y−4≤0,¿{x−2y+2≥0,¿¿¿¿则z=x− y 的最大值为▲.7.设袋中有黑球、白球共 9 个,从中任取 3 个球,若其中含有白球的概率为,则袋中白球的个数为▲.8.右图是计算的程序框图,为了得到正确的结果,在推断框中应该填入的条件是▲.9.右图是一个几何体的三视图,根据图中数据,可得该几何体的体积是▲.10.已知(2x−√22 )9展开式的第 7 项为214 ,则▲. 11.已知圆过双曲线M R 的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是▲.12.假如一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神奇数”.介于 1 到 200 之间的所有“神奇数”之和为▲.13.汽车的最佳使用年限是使年均消耗费用最低的年限(年均消耗费用=年均成本费+年均维修费).设某种汽车的购车的总费用为 50000 元;使用中每年的保险费、养路费及汽油费合计为 6000 元;前年的总维修费满足,已知第一年的维修费用为 1000 元,前二年总维修费为 3000 元.则这种汽车的最佳使用年限为▲.14.设函数和都在区间上有定义,若对的任意的子区间,总有上的和,使得不等式成立,则称是在区间上的甲函数,是在区间上的乙函数.已知,那么的乙函数▲.二、选择题 (每小题 4 分,共 16 分)15.设,则“且”是“且”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件16.将函数f (x)=|√3sin x−11cosx2001|的图像向右平移a¿(a>0)¿个单位,所得图像的函数为偶函数,则的最小值为 A.5π6B.2π3C.π3D. π617.三棱锥 P—ABC 的侧棱 PA、PB、PC 两两互相垂直,侧面面积分别是 6,4,3,则三棱锥的体积是A.4B.6C.8D. 1018.若函数f ( x)=(k−1)ax−a−x(a>0,a≠1)在上既是奇函数,又是减函数,则g( x)=loga( x+k)的图像是精品文档---下载后可任意编辑三.解答题(本大题满分 78 分)19.(本题满分 14 分)已知、为复数,z1= 3a+5+(10−a2)i、,若是实数,求|z2|的值.20.(本题...