电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

第五章线性系统的频域分析法VIP免费

第五章线性系统的频域分析法_第1页
1/7
第五章线性系统的频域分析法_第2页
2/7
第五章线性系统的频域分析法_第3页
3/7
第五章线性系统的频域分析法一、频率特性四、稳定裕度二、开环系统的典型环节分解和开环频率特性曲线的绘制五、闭环系统的频域性能指标三、频率域稳定判据本章主要内容:1控制系统的频带宽度2系统带宽的选择3确定闭环频率特性的图解方法4闭环系统频域指标和时域指标的转换五、闭环系统的频域性能指标1控制系统的频带宽度1频带宽度当闭环幅频特性下降到频率为零时的分贝值以下3分贝时,对应的频率称为带宽频率,记为ωb。即当ω>ωb而频率范围(0,ωb)称为系统带宽。根据带宽定义,对高于带宽频率的正弦输入信号,系统输出将呈现较大的衰减,因此选取适当的带宽,可以抑制高频噪声的影响。但带宽过窄又会影响系统正弦输入信号的能力,降低瞬态响应的速度。因此在设计系统时,对于频率宽度的确定必须兼顾到系统的响应速度和抗高频干扰的要求。2、I型和II型系统的带宽2、系统带宽的选择由于系统会受多种非线性因素的影响,系统的输入和输出端不可避免的存在确定性扰动和随机噪声,因此控制系统的带宽的选择需综合考虑各种输入信号的频率范围及其对系统性能的影响,即应使系统对输入信号具有良好的跟踪能力和对扰动信号具有较强的抑制能力。总而言之,系统的分析应区分输入信号的性质、位置,根据其频谱或谱密度以及相应的传递函数选择合适带宽,而系统设计主要是围绕带宽来进行的。3、确定闭环频率特性的图解方法1、尼科尔斯图线设开环和闭环频率特性为4、闭环系统频域指标和时域指标的转换工程中常用根据相角裕度γ和截止频率ω估算时域指标的两种方法。相角裕度γ表明系统的稳定程度,而系统的稳定程度直接影响时域指标σ%、ts。1、系统闭环和开环频域指标的关系系统开环指标截止频率ωc与闭环带宽ωb有着密切的关系。对于两个稳定程度相仿的系统,ωc大的系统,ωb也大;ωc小的系统,ωb也小。因此ωc和系统响应速度存在正比关系,ωc可用来衡量系统的响应速度。又由于闭环振荡性指标谐振Mr和开环指标相角裕度γ都能表征系统的稳定程度。系统开环相频特性可表示为2、开环频域指标和时域指标的关系典型二阶系统开环传递函数为例2已知一单位反馈系统,其开环传函为试用奈氏判据判定系统稳定性当K>1时,奈氏曲线逆时针包围点(-1,j0)半圈,开环传递函数右半平面有一个极点。根据奈氏判据P=1N=1/2,Z=P2N,系统稳定。当K<1时,奈氏曲线逆时针不包围点(-1,j0),但有一个极点,系统不稳定。奈氏曲线如下。例3某最小相角系统的开环对数幅频特性如图所示。要求:(1)写出系统开环传递函数;(2)利用相位裕量判断系统稳定;(3)将其对数幅频特性向右平移十倍频程,试讨论对系统性能的影响解:(1)由系统开环对数幅频特性曲线可知,系统存在两个交接频率0.1和20,故(2)系统开环对数幅频特性为从而解得ωc=1系统开环对数相频特性为故系统稳定。(3)将系统开环对数幅频特性向右平移十倍程,可得系统新的开环传递函数其截止频率ωc1=10ωc=10而系统的稳定性不变由时域估计指标公式ts=Kπ/ωc得ts1=0.1ts即调节时间缩短,系统动态响应加快。由得即系统超调量不变。例4已知单位反馈系统得开环频率特性如下图(a)、(b)所示,图(a)中,A点对应的频率ω=2rad/s,a为大于零的常数,求ω1,ω2,ω3及闭环系统的阻尼比和无阻尼自然振荡频率。

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

第五章线性系统的频域分析法

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部