高二(文科)导数应用题例题:时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格(单位:元/套)满足的关系式,其中,为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求的值;(2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数点)试题分析:(1)直接代入点(4,21)即可求出;(2)先建立利润函数模型,然后由导数确定函数的单调性,求出函数的最值及条件.试题解析:(1)因为时,,代入关系式,得,2分解得.4分(2)由(1)可知,套题每日的销售量,6分所以每日销售套题所获得的利润从而.8分令,得,且在上,,函数单调递增;在上,,函数单调递减,10分所以是函数在内的极大值点,也是最大值点,11分所以当时,函数取得最大值.12分故当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大.考点:1.利用导数处理函数的最值;2.函数模型的应用练习题一、单选题1.做一个无盖的圆柱形水桶,若要使其体积是,且用料最省,则圆柱的底面半径为()A.3B.4C.5D.62.现有一段长为的铁丝,要把它围成一个底面一边长为另一边长2倍的长方体形状的框架,当长方体体积最大时,底面的较短边长是()A.B.C.D.二、填空题3.传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在弯形时永远保持为圆柱体,其底面半径原为且以每秒等速率缩短,而长度以每秒等速率增长.已知神针的底面半径只能从缩到为止,且知在这段变形过程中,当底面半径为时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为__________.4.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为________.三、解答题5.在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为(米/单位时间),每单位时间的用氧量为(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为1.5(升),记潜水员在此次考察活动中的总用氧量为(升).(1)求关于的函数关系式;(2)求当下潜速度取什么值时,总用氧量最少.6.某工厂生产某种水杯,每个水杯的原材料费、加工费分别为30元、m元(m为常数,且2≤m≤3),设每个水杯的出厂价为x元(35≤x≤41),根据市场调查,水杯的日销售量与ex(e为自然对数的底数)成反比例,已知每个水杯的出厂价为40元时,日销售量为10个.(1)求该工厂的日利润y(元)与每个水杯的出厂价x(元)的函数关系式;(2)当每个水杯的出厂价为多少元时,该工厂的日利润最大,并求日利润的最大值.7.某造船公司年造船量是20艘,已知造船x艘的产值函数为R(x)=3700x+45x2-10x3(单位:万元),成本函数为C(x)=460x-5000(单位:万元).(1)求利润函数P(x);(提示:利润=产值-成本)(2)问年造船量安排多少艘时,可使公司造船的年利润最大?8.某辆汽车以xkm/h的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求60≤x≤120)时,每小时的油耗(所需要的汽油量)为,其中k为常数,若汽车以120km/h的速度行驶时,每小时的油耗为11.5L.(1)求k的值;(2)求该汽车每小时油耗的最小值.9.为了降低能源消耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用(单位:万元)与隔热层厚度(单位:)满足关系,若不建隔热层,每年能源消耗为8万元.设为隔热层建造费用与20年的能源消耗费用之和.(1)求的值及的表达式;(2)隔热层修建多厚时,总费用达到最小?并求最小值.10.现有一张长为,宽为()的长方形铁皮,准备用它做成一个无盖长方体铁皮容器,要求材料利用率为100%,不考虑焊接处损失.如图,在长方形的一个角上剪下一块边长为的正方形铁皮,作为铁皮容器的底面,用余下材料剪拼...