8-2 抽屉原理精品文档---下载后可任意编辑抽屉原理是一种特别的思维方法,不但可以根据它来做出许多有趣的推理和推断,同时能够帮助同学证明很多看似复杂的问题。本讲的主要教学目标是:1.理解抽屉原理的基本概念、基本用法;2.掌握用抽屉原理解题的基本过程;3. 能够构造抽屉进行解题;4. 利用最不利原则进行解题;5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。(2)定义一般情况下,把 n+1 或多于 n+1 个苹果放到 n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特别值方法.模块一、利用抽屉原理公式解题(一)、直接利用公式进行解题(1)求结论【例 1】 只鸽子要飞进个笼子,每个笼子里都必须有只,一定有一个笼子里有只鸽子.对吗?【解析】6 只鸽子要飞进 5 个笼子,假如每个笼子装 1 只,这样还剩下 1 只鸽子.这只鸽子可以任意飞进其中的一个笼子,这样至少有一个笼子里有 2 只鸽子.所以这句话是正确的.利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”,6÷5﹦1·····1,1+1﹦2(只)把 6 个苹果放到 5 个抽屉中,每个抽屉中都要有 1 个苹果,那么肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有 2 只鸽子.【巩固】 把 9 条金鱼任意放在...