电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

指数函数知识点梳理汇总VIP免费

指数函数知识点梳理汇总_第1页
1/7
指数函数知识点梳理汇总_第2页
2/7
指数函数知识点梳理汇总_第3页
3/7
指数函数(一)整数指数幂1.整数指数幂概念:2.整数指数幂的运算性质:(1)(2)(3)其中,.3.的次方根的概念一般地,如果一个数的次方等于,那么这个数叫做的次方根,即:若,则叫做的次方根,例如:27的3次方根,的3次方根,32的5次方根,的5次方根.说明:①若是奇数,则的次方根记作;若则,若则;②若是偶数,且则的正的次方根记作,的负的次方根,记作:;(例如:8的平方根16的4次方根)③若是偶数,且则没意义,即负数没有偶次方根;④∴;⑤式子叫根式,叫根指数,叫被开方数。∴..4.的次方根的性质一般地,若是奇数,则;若是偶数,则.(二)分数指数幂1.分数指数幂:即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式;如果幂的运算性质(2)对分数指数幂也适用,例如:若,则,,∴.即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。规定:(1)正数的正分数指数幂的意义是;(2)正数的负分数指数幂的意义是.2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用即说明:(1)有理数指数幂的运算性质对无理数指数幂同样适用;(2)0的正分数指数幂等于0,0的负分数指数幂没意义。二、指数函数1.指数函数定义:一般地,函数(且)叫做指数函数,其中是自变量,函数定义域是.2.指数函数在底数及这两种情况下的图象和性质:函数名称指数函数定义函数且叫做指数函数图象0101定义域值域(0,+∞)过定点图象过定点(0,1),即当x=0时,y=1.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况y>1(x>0),y=1(x=0),0<y<1(x<0)y>1(x<0),y=1(x=0),0<y<1(x>0)变化对图象影响在第一象限内,越大图象越高,越靠近y轴;在第二象限内,越大图象越低,越靠近x轴.在第一象限内,越小图象越高,越靠近y轴;在第二象限内,越小图象越低,越靠近x轴.1.1实数指数幂及其运算(一)(一)选择题1.下列正确的是()A.a0=1B.C.10-1=0.1D.2.的值为()A.±2B.2C.-2D.43.的值为()A.B.C.D.4.化简的结果是()A.aB.C.a2D.a3(二)填空题5.把下列根式化成分数指数幂的形式(其中a,b>0)(1)______;(2)=______;6.______.7.化简______.8.=______(三)解答题9.计算10.计算1.2实数指数幂及其运算(二)(一)选择题(每道题的四个选择答案中有且只有一个答案是正确的)1.下列说法正确的是(n∈N*)()A.正数的n次方根是正数B.负数的n次方根是负数C.0的n次方根是0D.是无理数2.函数的定义域为()A.RB.[0,+∞)C.(0,+∞)D.(-∞,1]3.可以简化为()A.B.C.D.4.化简的结果是()A.B.x2C.x3D.x4(二)填空题5.________,________________________.6.________.7.计算________.8.若a+a-1=3,则a2+a-2=______.(三)解答题10.若求的值.1.3指数函数(一)(一)选择题(每道题的四个选择答案中有且只有一个答案是正确的)1.一种细胞在分裂时由一个分裂成两个,两个分裂成四个,四个分裂成八个……每天分裂一次.现在将一个该细胞放入一个容器,发现经过10天就可充满整个容器,则当细胞分裂到充满容器一半时需要的天数是()A.5B.9C.6D.82.下列函数中为指数函数的是()A.y=2·3xB.y=-3xC.y=3-xD.y=1x3.若0.2m=3,则()A.m>0B.m<0C.m=0D.以上答案都不对4.函数f(x)=ax+1(其中a>0且a≠1)的图象一定经过点()A.(0,1)B.(0,2)C.(0,3)D.(1,3)(二)填空题5.若函数f(x)是指数函数且f(3)=8,则f(x)=______.6.函数的定义域为______,值域为______.7.函数y=2x-1的图象一定不经过第______象限;若函数的图象不经过第一象限,则实数b的取值范围是______.8.若2m>4,则m的取值范围是______;若(0.1)t>1,则t的取值范围是______.9.指数函数y=(a2-1)x在R上是减函数,则实数a的取值范围是______.(三)解答题10.根据函数f(x)=2x的图象,画出下列函数的草图.(1)y=-2x(2)y=-2x+1(3)y=2|x|11.求函数的定义域和值域.12.已知a>0且a≠1,函数f1(x)=,f2(x)=,若f1(x)<f2(x),求x的取值范围.1.4指数函数(二)(一)选择题(每...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

指数函数知识点梳理汇总

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部