九年级下十一月月考前训练专题1.已知ABC与CBA′相似,并且点A与点A、点B与点B、点C与点C是对应顶点,其中80A,60B,则C___________度.2.已知:ABC∽DEF,且DA,8AB,6AC,2DE,那么DF___________________.3.下列说法正确的是()(A)矩形都是相似图形(B)菱形都是相似图形(C)各边对应成比例的多边形是相似多边形(D)等边三角形都是相似三角形4、下列说法:①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有等腰直角三角形都相似;④所有的直角三角形都相似.其中正确的是(把你认为正确的说法的序号都填上).5.(2010年钦州)已知:如图,在△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D.(1)求证:BC=CD;(2)求证:∠ADE=∠ABD;(3)设AD=2,AE=1,求⊙O直径的长.ABCDEO6.(2012山东济宁7分)如图,AB是⊙O的直径,AC是弦,OD⊥AC于点D,过点A作⊙O的切线AP,AP与OD的延长线交于点P,连接PC、BC.(1)猜想:线段OD与BC有何数量和位置关系,并证明你的结论.(2)求证:PC是⊙O的切线.7.(本题满分12分)如图,在平面直角坐标系中,⊙M与x轴交于A、B两点,AC是⊙M的直径,过点C的直线交x轴于点D,连接BC,已知点M的坐标为(0,),直线CD的函数解析式为y=-x+5.⑴求点D的坐标和BC的长;⑵求点C的坐标和⊙M的半径;⑶求证:CD是⊙M的切线.8、在平面直角坐标系中,O为原点,A点坐标为(-8,0),B点坐标为(2,0),以AB为直径的⊙P与y轴的负半轴交于点C。(1)求图象经过A、B、C三点的抛物线的解析式;(2)设M点为(1)中抛物线的顶点,求直线MC的解析式;(3)判定(2)中的直线MC与⊙P的位置关系,并说明理由。9.(2012山东日照4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2-4ac>0;②2a+b<0;③4a-2b+c=0;④a︰b︰c=-1︰2︰3.其中正确的是【】(A)①②(B)②③(C)③④(D)①④10.(2012山东泰安3分)设A,B,C是抛物线上的三点,则,,的大小关系为【】A.B.C.D.11.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线形状如图(1)所示。图(2)建立直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系是。请回答下列问题:(1)柱子OA的高度是多少米?(2)喷出的水流距水平面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外?AMOBCDyx12.(2012山东菏泽10分)牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价(元/件)…2030405060…每天销售量(件)…500400300200100…(1)把上表中、的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想与的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)菏泽市物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?13.(2012山东聊城12分)某电子厂商投产一种新型电子厂品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得3502万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?14.(2012山东滨州10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.(1)求抛物线...