电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

平面向量数量积的物理背景及其含义

平面向量数量积的物理背景及其含义_第1页
1/10
平面向量数量积的物理背景及其含义_第2页
2/10
平面向量数量积的物理背景及其含义_第3页
3/10
精品文档---下载后可任意编辑平面对量数量积的物理背景及其含义 教学设计一、教学分析前面已经知道,向量的线性运算有非常明确的几何意义,因此利用向量运算可以讨论一些几何元素的位置关系.既然向量可以进行加减运算,一个自然的想法是两个向量能否做乘法运算呢假如能,运算结果应该是什么呢另外,距离和角是刻画几何元素(点、线、面)之间度量关系的基本量.我们需要一个向量运算来反映向量的长度和两个向量间夹角的关系.众所周知,向量概念的引入与物理学的讨论密切相关,物理学家很早就知道,假如一个物体在力 F 的作用下产生位移s(如图 1),那么力 F 所做的功图 1W=|F||s|cosθ功 W 是一个数量,其中既涉及“长度”,也涉及“角”,而且只与向量 F,s 有关.熟悉的数的运算启发我们把上式解释为两个向量的运算,从而引进向量的数量积的定义a·b=|a||b|cosθ.这是一个好定义,它不仅满足人们熟悉的运算律(如交换律、分配律等),而且还可以用它来更加简洁地表述几何中的许多结果.向量的数量积是一种新的向量运算,与向量的加法、减法、数乘运算一样,它也有明显的物理意义、几何意义.但与向量的线性运算不同的是,它的运算结果不是向量而是数量.二、教学目标1、知识与技能:掌握平面对量的数量积及其几何意义;掌握平面对量数量积的重要性质及运算律;了解用平面对量的数量积可以处理有关长度、角度和垂直的问题;掌精品文档---下载后可任意编辑握向量垂直的条件。2、过程与方法:通过物理中“功”等实例,理解平面对量数量积的含义及其物理意义;体会平面对量的数量积与向量投影的关系。3、情感态度与价值观:通过与物理中“功”的类比抽象出向量的数量积,培育学生的抽象概括能力。三、重点难点教学重点:平面对量数量积的定义.教学难点:平面对量数量积的定义及其运算律的理解和平面对量数量积的应用.四、教学设想(一)导入新课思路 1.我们前面知道向量概念的原型就是物理中的力、速度、位移以及几何中的有向线段等概念,向量是既有大小、又有方向的量,它与物理学中的力学、运动学等有着天然的联系,将向量这一工具应用到物理中,可以使物理题解答更简捷、更清楚,并且向量知识不仅是解决物理许多问题的有利工具,而且用数学的思想方法去审视相关物理现象,讨论相关物理问题,可使我们对物理问题认识更深刻.物理中有许多量,比如力、速度、加速度、位移等都是向量,这些物理现象都可以用向量来讨论.在物理课中,我们学过功的概念,即假如一个物体在力 F 的作用下...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

平面向量数量积的物理背景及其含义

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部