电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

排列组合问题解法大全

排列组合问题解法大全_第1页
1/8
排列组合问题解法大全_第2页
2/8
排列组合问题解法大全_第3页
3/8
排列组合问题解法大全 一.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 A、60种 B、48种 C、36种 D、24种 解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A 种。 二.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A、1440种 B、3600种 C、4820种 D、4800种 解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A 种,选B . 三.特殊元素或特殊位置优限法:优先解决带限制条件的元素或位置,或说“先解决特殊元素或特殊位置” 例3.1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种? 解析:老师在中间三个位置上选一个有13A 种,4名同学在其余4个位置上有44A 种方法;所以共有143472A A 种. 四.分组分配:n 个不同元素按照某些条件分配给 k 个不同得对象,称为分配问题,分定向分配和不定向分配两种问题;将 n 个不同元素按照某些条件分成k 组,称为分组问题.分组问题有不平均分组、平均分组、和部分平均分组三种情况。分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的;而后者即使 2 组元素个数相同,但因对象不同,仍然是可区分的.对于后者必须先分组后排列。 1.基本的分组问题 例4 六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法? (1)每组两本. (2)一组一本,一组二本,一组三本. (3)一组四本,另外两组各一本. 分析:(1)分组与顺序无关,是组合问题。分组数是624222CCC=90(种) ,这 90 种分组实际上重复了 6 次。我们不妨把六本不同的书写上1、2、3、4、5、6 六个号码,考察以下两种分法:(1,2)(3,4)(5,6)与(3,4)(1,2)(5,6),由于书是均匀分组的,三组的本数一样,又与顺序无关,所以这两种分法是同一种分法。以上的分组方法实际上加入了组的顺序,因此还应取消分组的顺序,即除以组数的全排列数33A ,所以分法是22264233C C CA=15(种)。(2)先分组,方法是615233CCC,那么还要不要除以33A ?我们发现,由于每组的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

排列组合问题解法大全

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部