沪教版六年级下学期数学知识点梳理 1.相反意义的量 收入与支出;增加与减少; 上升与下降; 零上与零下;高于海平面与低于海平面;前进与后退; 盈利与亏损; ……任意规定一方为正,则另一方为负。 2.正数与负数 4.数轴的概念与画法 数轴是规定了原点、正方向和单位长度的直线; 数轴画法:一直线 + 三要素 5.数轴的性质 数轴上表示的两个数,右边的数总比左边的数大; 正数都大于零,负数都小于零,正数大于一切负数。 6.相反数 只有符号不同的两个数互为相反数,其中一个数是另一个数的相反数;0 的相反数是 0. 正数的相反数是负数;负数的相反数是正数;零的相反数是它本身。 7.相反数的几何意义 数轴上,表示互为相反数的两个点,它们分别位于原点的两侧,而且与原点的距离相等。 10.有理数的大小比较 两个负数,绝对值大的反而小; 对于任意有理数的大小比较应采用:正数都大于零,负数都小于零,正数大于负数。 比较两个数的大小,还可以用“作差法”,即: 11.有理数加法及加法法则 把两个有理数合成一个有理数的运算,叫做有理数的加法。分五种情况:①两个正数相加;②两个负数相加;③两个异号数相加;④有理数和零相加;⑤零和零相加。 有理数的加法法则:①同号两数相加,取相同的符号,并把绝对值相加;②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;③互为相反数的两个数相加得零;④一个数与零相加,仍得这个数。 注意:利用加法法则计算的步骤:先确定和的符号,再进行绝对值相加或相减。 12.有理数加法运算律 加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c) 运算律有下列规律:①互为相反数的两数可以先相加;②符号相同的数可以相加;③分母相同的数可以先相加;④几个数相加能得到整数的可以先相加。 13.有理数的减法法则及运算 法则:减去一个数,等于加上这个数的相反数。 注意:两个“变”字,①改变运算符号;②改变减数的性质符号(变为相反数), 牢记一个“不变”,被减数与减数的位置不变,即没有交换律。 14.有理数乘法的意义 乘法是加法的特殊运算形式,它可以看作是多个相同的数相加运算的一种简便运算。如: n 个a 相加等于n*a 15.有理数的乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘都得零。 注意:①运算步骤:符号→绝对值相乘;②带分数要化成假分数 16.有理数乘法法则的推广 ...