1 数理统计上机 报 告 上机实验题目:用R 软件进行一元线性回归 上机实验目的: 1、 进一步理解假设实验的基本思想,学会使用实验检验和进行统计推断。 2、 学会利用 R 软件进行假设实验的方法。 一元线性回归基本理论、方法: 基本理论:假设预测目标因变量为Y,影响它变化的一个自变量为X,因变量随自变量的增(减)方向的变化。一元线性回归分析就是要依据一定数量的观察样本(Xi, Yi),i=1,2…,n,找出回归直线方程 Y=a+b*X 方法:对应于每一个Xi,根据回归直线方程可以计算出一个因变量估计值 Yi。回归方程估计值 Yi 与实际观察值 Yj 之间的误差记作 e-i=Yi-Yi。显然,n 个误差的总和越小,说明回归拟合的直线越能反映两变量间的平均变化线性关系。据此,回归分析要使拟合所得直线的平均平方离差达到最小,据此,回归分析要使拟合所得直线的平均平方离差达到最小,简称最小二乘法将求出的a 和 b代入式(1)就得到回归直线Yi=a+bXi 。那么,只要给定Xi 值,就可以用作因变量Yi 的预测值。 (一) 实验实例和数据资料: 有甲、乙两个实验员,对同一实验的同一指标进行测定,两人测定的结果如下: 实验号 1 2 3 4 5 6 7 8 甲 4.3 3.2 3.8 3.5 3.5 4.8 3.3 3.9 乙 3.7 4.1 3.8 3.8 4.6 3.9 2.8 4.4 试问:甲、乙两人的测定有无显著差异?取显著水平 α=0.05. 上机实验步骤: 2 (1)设置假设:H0:u1-u-2=0:H1:u1-u-2<0 (2)确定自由度为n1+n2-2=14;显著性水平a=0.05 (3)计算样本均值样本标准差和合并方差统计量的观测值 alpha<-0.05; n1<-8; n2<-8; x<-c(4.3,3.2,3.8,3.5,3.5,4.8,3.3,3.9); y<-c(3.7,4.1,3.8,3.8,4.6,3.9,2.8,4.4); var1<-var(x); xbar<-mean(x); var2<-var(y); ybar<-mean(y); Sw2<-((n1-1)*var1+(n2-1)*var2)/(n1+n2-2) t<-(xbar-ybar)/(sqrt(Sw2)*sqrt(1/n1+1/n2)); tvalue<-qt(alpha,n1+n2-2); (4)计算临界值:tvalue<-qt(alpha,n1+n2-2) (5)比较临界值和统计量的观测值,并作出统计推断 实例计算结果及分析: alpha<-0.05; > n1<-8; > n2<-8; > x<-c(4.3,3.2,3.8,3.5,3.5,4.8,3.3,3.9); > y<-c(3.7,4.1,3.8,3.8,4.6,3.9,2.8,4.4); > var1<-var(x); > xbar<-mean(x); > var2<-var(y); > ybar<-mean(y); > Sw2<-((n1-1)*var1+(n2-1)*var2)/(n1+n2-2) > t<-(xbar-ybar)/(sqrt(Sw2)*sqrt(1/n1+1/n2)); ...