电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

十五、高考数学填空题的解题策略VIP免费

十五、高考数学填空题的解题策略_第1页
十五、高考数学填空题的解题策略_第2页
十五、高考数学填空题的解题策略_第3页
概念、方法、题型、易误点及应试技巧总结高考数学填空题的解题策略十五、高考数学填空题的解题策略数学填空题在前几年江苏高考中题量一直为4题,从去年开始增加到6题,今年虽然保持不变,仍为6题,但分值增加,由原来的每题4分增加到每题5分,在高考数学试卷中占分达到了20%。它和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍、跨度大、知识覆盖面广、考查目标集中,形式灵活,答案简短、明确、具体,评分客观、公正、准确等。根据填空时所填写的内容形式,可以将填空题分成两种类型:一是定量型,要求考生填写数值、数集或数量关系,如:方程的解、不等式的解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等。由于填空题和选择题相比,缺少选择支的信息,所以高考题中多数是以定量型问题出现。二是定性型,要求填写的是具有某种性质的对象或者填写给定的数学对象的某种性质,如:给定二次曲线的准线方程、焦点坐标、离心率等等。近几年出现了定性型的具有多重选择性的填空题。在解答填空题时,由于不反映过程,只要求结果,所以对正确性的要求比解答题更高、更严格,《考试说明》中对解答填空题提出的基本要求是“正确、合理、迅速”。为此在解填空题时要做到:快——运算要快,力戒小题大作;稳——变形要稳,不可操之过急;全——答案要全,力避残缺不齐;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。(一)数学填空题的解题方法1、直接法:直接从题设条件出发,利用定义、性质、定理、公式等,经过变形、推理、计算、判断得到结论的,称为直接法。它是解填空题的最基本、最常用的方法。使用直接法解填空题,要善于通过现象看本质,自觉地、有意识地采取灵活、简捷的解法。例1、乒乓球队的10名队员中有3名主力队员,派5名参加比赛。3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种(用数字作答)。解:三名主力队员的排法有33A种,其余7名队员选2名安排在第二、四位置上有27A种排法,故共有排法数33A27A=252种。例2、102(2)(1)xx的展开式中10x的系数为。解:10201019281010210101010(2)(1)(242)(1)xxCxCxCxCx得展开式中10x的系数为010C2104C=179。例3、已知函数21)(xaxxf在区间),2(上为增函数,则实数a的取值范围是。解:22121)(xaaxaxxf,由复合函数的增减性可知,221)(xaxg在1概念、方法、题型、易误点及应试技巧总结高考数学填空题的解题策略),2(上为增函数,∴021a,∴21a。2、特殊化法:当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,特殊数列,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。这样可大大地简化推理、论证的过程。例4、在ABC中,角A、B、C所对的边分别为a、b、c,如果a、b、c成等差数列,则CACAcoscos1coscos解法一:取特殊值a=3,b=4,c=5,则cosA=,54cosC=0,CACAcoscos1coscos45。解法二:取特殊角A=B=C=600cosA=cosC=21,CACAcoscos1coscos45。例5、如果函数2()fxxbxc对任意实数t都有(2)(2)ftft,那么(1),(2),(4)fff的大小关系是。解:由于(2)(2)ftft,故知()fx的对称轴是2x。可取特殊函数2()(2)fxx,即可求得(1)1,(2)0,(4)4fff。∴(2)(1)(4)fff。例6、已知SA,SB,SC两两所成角均为60°,则平面SAB与平面SAC所成的二面角为。解:取SA=SB=SC,则在正四面体S-ABC中,易得平面SAB与平面SAC所成的二面角为1arccos3。例7、已知,mn是直线,,,是平面,给出下列命题:①若,,则∥;②若,nn,则∥;③若内不共线的三点到的距离都相等,则∥;④若,nm,且n∥,m∥,则∥;⑤若,mn为异面直线,n,n∥,m,m∥,则∥。则其中正确的命题是。(把...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部