3。1。2 两角和与差的正弦、正切公式说课稿授课老师:肇庆高新区大旺中学 XXX教材:人教 A 版必修 4 第三章教材分析:本节是人教 A 版必修 4 第三章第一节的第 3。1.2 节,是继两角和与差的余弦公式之后的另外四个三角恒等变换公式的学习,又是即将要学习的二倍角公式的基础,是三角恒等变换的基石,起着重要的承前启后的作用。在高考中,由于三角函数所占分值比重较重,而且三角恒等变换为常考题型,因此作为三角恒等变换的基础,两角和与差的正弦、正切公式又显得尤为重要。3。1 节(两角和与差的正弦、余弦、正切公式)共分 4 课时,两角和与差的余弦、正切公式为第 2 课时。教学目标:1、知识目标:①、通过利用两角和与差的余弦公式对正弦、正切公式的探究,加强对和差角公式的认识。②、熟悉推导两角和与差的余弦、正切公式的过程,体会三角变换的规律与技巧及代换法的作用.③、学会公式的简单应用:正用与逆用。2、能力目标:①、通过对两角和与差的正弦、正切公式的探究和推导,提高学生的逻辑推理能力。②、通过公式的灵活应用,培育学生的方程思想和变换能力。③、培育学生思维的有序性和表述的条理性。3、德育目标:①、公式的推导过程,体现了知识间的内在联系.②、培育学生利用联系、变化的辨证唯物主义观点去分析问题。③、通过老师启发引导,培育学生勇于探究的求知精神和解决问题的优化意识。4、美育目标:通过对公式的观察与对比,发现两角和与差的正弦、余弦、正切值与单角的三角函数值之间的和谐、轮换结构,让学生感受数学公式的匀称美感。教学重、难点:教学重点:① 两角和与差的正弦、正切公式的推导过程与公式的运用.② 培育学生用已有知识构建新知的能力,并且能掌握新知及应用新知的能力.教学难点:公式的探究,包括过程的组织和引导。教法学法:1、老师进行启发引导式教学,指导学生主动参加公式的发现、推导和应用,对学生探究的结果、及公式应用的成果展示做合理的评价。2、学生实行自主探究、小组讨论、合作沟通的学习方式,并展示自己的学习成果。教学手段:老师利用多媒体平台,展示教学内容与教学过程,学生用小黑板展示小组的探究成果.教学流程: 温故知新,创设情境 明确探究目标及途径 组织学生自主探究 通过例题、练习 加强对公式的理解 课堂小结 作业布置教学过程:【温故知新,复习引入】1、= = = = = = 2、C(α—β) = C(α+β) = 由 C(α-β)推导出 C(α+β)的详细过程:...