递推数列通项公式的教学设计目录1 引言...........................................................................................................................22 相关理论基础...........................................................................................................32.1 弗赖登塔尔的“数学化”理论......................................................................32.2 布鲁纳归类理论.............................................................................................42.3 皮亚杰的建构主义理论..................................................................................42.4 奥苏贝尔的有意义学习理论..........................................................................43 常用方法概述...........................................................................................................54 常见递推数列通项公式的推导及使用....................................................................64.1 作差求和法.....................................................................................................64.2 作商求和法.....................................................................................................64.3 换元法.............................................................................................................64.4 积差相消法.....................................................................................................74.5 取倒数法.........................................................................................................74.6 取对数法.........................................................................................................84.7 平方(开方)法.............................................................................................84.8 待定系数法.....................................................................................................84.9 猜想法...........................................................................................................1...