圆 第二节 直和圆位置关系导学案 3主编人: 主审人:班级: 学号: 姓名:学习目标:【知识与技能】1、掌握切线长的概念及切线长定理2、掌握三角形的内切圆及内心等概念3、会作三角形的内切圆【过程与方法】1、 利用圆的轴对称性帮助探究切线长的特征2、 结合求三角形内面积最大的圆的问题,给出了三角形的内切圆和内心的概念3、 类比思想、数形结合、方程思想的运用【情感、态度与价值观】通过操作、实验、发现、证明等数学活动,探究数学结论,激发学生学习数学的兴趣【重点】切线长定理【难点】内切圆、内心的概念及运用学习过程:一、自主学习〔一〕复习稳固1、三角形的外心:2、角平分线的性质定理:3、切线的判定定理:4、切线的性质定理:〔二〕自主探究1、按探究要求,请同学们动手操作,思考 24.2—12 中,OB 是⊙O 的一条半径吗 PB是⊙O 的切线吗 利用图形的轴对称性,说明圆中的 PA 与 PB,∠APO 与∠BPO 有什么关系 __________________________________________2、什么叫切线长 注意:切线和切线长是两个不同的概念,切线是,不能度量;切线长是的长,这条线段的两个端点分别是圆外一点和切点,可以度量。3、切线长定理:从圆外一点可以引圆的两条,它们的切线长,这一点和圆心的连线两条切线的. 4、常用辅助线PA,PB 切⊙O 于 A,B。〔1〕〔2〕〔4〕〔3〕图〔1〕中,有什么结论图〔2〕中,连结 AB,增加了什么结论图〔3〕中,再连结 OP,增加了什么结论图〔4〕中,再连结 OA,OB。又增加了什么结论5、和三角形的各边都相切的圆与三角形各边都的圆叫做三角形的内切圆,内切圆的圆心是三角形三条的交点,叫做三角BACEDOF形的内心。注意:“接〞与“切〞是说明三角形顶点和边与圆的关系,顶点都在圆上的叫做“接〞,各边都与圆相切的叫做“切〞。〔三〕、归纳总结:1、圆的切线长概念 2、切线长定理 3、三角形的内切圆及内心的概念〔四〕自我尝试:1 、 如 图 1 , PA 、 PB 分 别 切 圆 O 于 A 、 B , 并 与 圆 O 的 切 线 , 分 别 相 交 于C、D,PA=7cm,那么△PCD 的周长等于_________.(1)2、如图,⊙O 是△ABC 的内切圆,切点为 D、E、F,假如 AB=2,BC=3,AC=1,且△ABC 的面积为 6.求内切圆的半径 r.〔提示:内心为 O,连接 OA,OB,OC〕3、当 △ABC 的内切圆的半径 r, △ABC 的周长为 L,求△ABC 的面积二、老师点拔1、切线长是一条长,是经过...