论文题目:分离变量法在波动方程不同定解条件中的应用内容摘要分离变量法的基本思想是, 使偏微分方程分解为若干个较简单且只含一个变量的常微分方程.分析三类边界状态在解题应用中有重要影响, 本文主要通过分析实例中的问题, 分析了一维波动方程在三类边界条件的不同组合下的定解问题的实际求解, 并以在第一类边界条件下的应用情况为例, 详细分析了遇到非齐次的方程及边界条件时需要如何处理, 从而进一步加深理解.【关键词】波动方程 分离变量法 定解问题 1Title:The application of separation variable method in different fixed solution conditions of wave equationAbstractSeparation variable method, the basic idea is to make the partial differential equation is decomposed into several simple and ordinary differential equation containing a variable only. Analysis of three kinds of boundary condition have important influences in the problem solving, this paper analyzes the problems in the instance, one dimensional wave equation is analyzed under the different combination of three kinds of boundary conditions on the constant solution, the solution actual problem and the application in the first kind of boundary conditions, for example, are analyzed in detail with inhomogeneous equation and the boundary conditions need to how to deal with, so as to further deepen the understanding. 【 Key Words 】 wave equation separation variable method initial value problem2目录一、引言..........................................................................................................................................5二、数学物理方程的基本概念................................................................................5(一)预备知识..................................................................................................................................5(二)波动方程.........................................................................................................