1.1.3 集合的基本运算(一)一、学习目标1.理解并集、交集的含义,会求两个简单集合的并集与交集. 2.体验通过实例的分析和阅读来自学探究集合间的关系与运算的过程,培养学生的自学阅读能力和自学探究能力.3.能使用 Venn 图表达集合的关系及运算,体会 Venn 图的作用. 二、自学导引1、一般的,由所有属于 的元素组成的集合, 称为集合 A 与集合 B 的并集,记作(读作“A 并 B”),即= .2、由属于 的所有元素组成的集合,称为集合 A 与集合 B 的交集,记作(读作“A 交 B”),即= .3、 , , , .4、若,则= ,= .5、 A, B,A , .三、典型例题1、求两个集合的交集与并集例 1 求下列两个集合的交集和并集⑴,;⑵,.变式迁移 1 ⑴ 设集合,等于 ( )A B.C. D. ⑵ 若将⑴中 A 改为,求.2、已知集合的交集、并集求参数的问题例 2 已知集合,,若=,求的值.3、交集、并集性质的综合应用例 3 设. ⑴ 若,求的值; ⑵ 若,求的值。变式迁移 3 已知集合,若,求实数的取值范围.4、课堂练习1.已知,,则等于( )A B.C. D.2.已知则等于( )A.B.C. D.3.已知集合,那么等于A. B.N C.M D. R4. 若 集 合 A=,,=, 则 满 足 条 件 的 实 数 x 的 个 数 有 ( )A.1 个 B.2 个 C.3 个 D.4 个二、填空题 5.满足条件的集合 M 的个数是 .6.已知且,则满足上述条件的集合 A 共有 个.7.已知集合且满足=,则实数的取值范围是 .8.已知集合,,若,则= .10 个高考试题1.集合 A=,B=,则=(A) (B) (C) (D)2.若集合,则A、 B、 C、 D、3.集合则=(A) {1,2} (B) {0,1,2} (C){x|0≤x<3} (D) {x|0≤x≤3}4.若集合A={-2<<1},B={0<<2}则集合 A ∩ B=A. {-1<<1} B. {-2<<1}C. {-2<<2} D. {0<<1}课堂小结: