2024 东莞市中考数学考点 严谨是数学证明中很重要且基本的一部分。数学家希望他们的定理以系统化的推理依着公理被推论下去。这是为了避开依着不可靠的直观,从而得出错误的“定理”或“证明”。今日我在这给大家整理了一些东莞市中考数学考点,我们一起来看看吧! 东莞市中考数学考点 一、平行线分线段成比例定理及其推论: 1.定理:三条平行线截两条直线,所得的对应线段成比例。 2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。 3.推论的逆定理:假如一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。 二、相似预备定理: 平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。 三、相似三角形: 1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。 2.性质:(1)相似三角形的对应角相等; (2)相似三角形的对应线段(边、高、中线、角平分线)成比例; (3)相似三角形的周长比等于相似比,面积比等于相似比的平方。 说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;② 要注意两个图形元素的对应。 3.判定定理: (1)两角对应相等,两三角形相似; (2)两边对应成比例,且夹角相等,两三角形相似; (3)三边对应成比例,两三角形相似; (4)假如一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。 中考数学考点总结 轴对称知识点 1.假如一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。 2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 3.角平分线上的点到角两边距离相等。 4.线段垂直平分线上的任意一点到线段两个端点的距离相等。 5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 6.轴对称图形上对应线段相等、对应角相等。 7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,根据原图顺序依次连接各点。 8.点(x,y)关于 x 轴对称的点的坐标为(x,y) 点(x,y)关于 y 轴对称的点的坐标为(x,y) 点(x,y)关于原点轴对称的点的坐标为(x,y) 9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角) 等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为三线合一。 10....