数学归纳法证明不等式数学归纳法(一)教学目标:1.了解数学归纳法的原理,能用数学归纳法证明一些简单的与正整数有关的数学命题;2. 进一步发展猜想归纳能力和创新能力,经历知识的构建过程, 体会类比的数学思想。教学重点:数学归纳法产生过程的分析和对数学归纳法的证题步骤的掌握。教学难点:数学归纳法中递推思想的理解。教学过程:一、创设情境,引出课题(1)不完全归纳法:今天早上,我曾疑惑,怎么一中(永昌一中)只招男生吗?因为清晨我在学校门口看到第一个进校园的是男同学,第二个进校园的也是男同学,第三个进校园的还是男同学。于是得出结论:学校里全部都是男同学,同学们说我的结论对吗?(这显然是一个错误的结论,说明不完全归纳的结论是不可靠的,进而引出第二个问题)(2)完全归纳法:一个火柴盒,里面共有五根火柴,抽出一根是红色的,抽出第二根也是红色的,请问怎样验证五根火柴都是红色的呢?(将火柴盒打开,取出剩下的火柴,逐一进行验证。)注:对于以上二例的结果是非常明显的,教学中主要用以上二题引出数学归纳法。结论:不完全归纳法→结论不可靠; 完全归纳法→结论可靠。问题:以上问题都是与正整数有关的问题,从上例可以看出,要想正确的解决一个与此有关的问题,就可靠性而言,应该选用第几种方法?(完全归纳法)情境一:(播放多米诺骨牌视频)问:怎样才能让多米诺骨牌全部倒下?二、讲授新课:探究一:让所有的多米诺骨牌全部倒下,必须具备什么条件?条件一:第一张骨牌倒下;条件二:任意相邻的两张骨牌,前一张倒下一定导致后一张倒下。探究二:同学们在看完多米诺骨牌视频后,是否对怎样证明1有些启发? 得出结论:证明的两个步骤:(1)证明当时,命题成立;(2)假设当时命题成立,证明当时命题也成立。一般地,证明一个与正整数有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当取第一个值时命题成立;(2)(归纳递推)假设时命题成立,证明当时,命题也成立。只要完成以上两个步骤,就可以判定命题对从开始的所有正整数都成立。上述方法叫做数学归纳法。三、应用举例:例 1 用数学归纳法证明:证明:(1)当时,左边,右边,等式成立;(2)假设当(k≥1,kN*)时,,那么:,则当时也成立。根据(1)和(2),可知等式对任何都成立。注:①对例 1,首先说明在利用数学归纳法证题时,当时的证明必须利用的归纳假设, 例 2:用数学归纳法证明求证:能被 6 整除.[证明]:. 当...