2015 高中数学 1.1.1 算法的概念讲解 新人教 A 版必修 31.算法的概念:对一类问题的机械的、统一的求解方法.算法是由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题.2.算法的重要特征:(1)有限性:一个算法在执行有限步后必须结束;(2)确 定性:算法的每一个步骤和次序必须是确定的;(3)输入:一个算法有 0 个或多个输入,以刻划运算对象的初始条件.所谓 0 个输入是指算法本身定出了初始条件.(4)输出:一个算法有 1 个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的.算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。但是我们却从小学就开始接触算法,熟悉许多问题的算法。如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。因此,算法其实是重要的数学对象。算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。广义地说,算法就是做某一件事的步骤或程序。菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。比如解方程的算法、函数求值的算法、作图的算法,等等。要点一:算法的有限性和确定性例 1 任意给定一个大于 1 的整数 n,试设计一个程序或步骤对 n 是否为质数做出判定。解析:根据质数的定义判断解:算法如下:第一步:判断 n 是否等于 2,若 n=2,则 n 是质数;若 n>2,则执行第二步。第二步:依次从 2 至(n-1)检验是不是 n 的因数,即整除 n 的数,若有这样的数,则 n 不是质数;若没有这样的数,则 n 是质数。这是判断一个大于 1 的整数 n 是否为质数的最基本算法。点评:通过例 1 明确算法具有两个主要特点:有限性和确定性。变式训练 1:一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物.没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊....