玻尔假设·教案 一、教学目标 1.了解玻尔的三条假设.和量子数 n 的关系.3.了解玻尔理论的重要意义. 二、重点、难点分析 1.玻尔理论是本节课的重点内容,通过学习玻尔的三条假设使学生了解玻尔把原子结构的理论向前推进了一步.2.电子在可能的轨道上的能量是指电子总的能量,即动能和电势能的和,这点学生容易产生误解;对原子发光现象的解释也是学生学习的难点. 三、主要教学过程 (一)新课引入前一节提到卢瑟福的原子核式结构学说跟经典的电磁理论产生了矛盾,这说明了经典的电磁理论不适用于原子结构.那么怎么解释原子是稳定的?又怎么解释原子发光的光谱不是连续光谱呢?(二)教学过程设计1.玻尔的原子模型.(1)原子的稳定性.经典的电磁理论认为电子绕原子核旋转,由于电子辐射能量,因此随着它的能量减少,电子运行的轨道半径也减小,最终要落入原子核中.玻尔在 1913 年结合普朗克的量子理论针对这一问题提出新的观点.玻尔假设一:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量这些状态叫做定态.说明:这一说法和事实是符合得很好的,电子并没有被库仑力吸引到核上,就像行星绕着太阳运动一样.这里所说的定态是指原子可能的一种能量状态,有某一数值的能量,这些能量包含了电子的动能和电势能的总和.(2)原子发光的光谱.经典的电磁理论认为电子绕核运行的轨道不断的变化,它向外辐射电磁波的频率应该等于绕核旋转的频率.因此原子辐射一切频率的电磁波,大量原子的发光光谱应该是连续光谱.玻尔针对这一问题提出新的观点.玻尔假设二:原子从一种定态(E 初)跃迁到另一种定态(E 终)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即hυ=E 初-E 终.说明:这一说法也和事实符合得很好,原子发光的光谱是由一些不连续的亮线组成的明线光谱.(3)原子能量状态和电子轨道.玻尔假设三:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的.2.氢原子的轨道半径和能量.玻尔从上述假设出发,利用库仑定律和牛顿运动定律,计算出了氢的电子可能的轨道半径和对应的能量.根据计算结果概括为公式:说明公式中 r1、E1和 rn、En的意义,并说明 n 是正整数,叫做量子数,r1=0.53×10-10m,E1=-13.6eV.n=2,3,4…时,相应的能量为E2=-3.4eV、E3=-1.51 eV、E4=-0....