数列的综合问题【2019 年高考考纲解读】1.数列的综合问题,往往将数列与函数、不等式结合,探求数列中的最值或证明不等式.2.以等差数列、等比数列为背景,利用函数观点探求参数的值或范围.3.将数列与实际应用问题相结合,考查数学建模和数学应用能力.【重点、难点剖析】一、利用 Sn,an的关系式求 an1.数列{an}中,an与 Sn的关系an=2.求数列通项的常用方法(1)公式法:利用等差(比)数列求通项公式.(2)在已知数列{an}中,满足 an+1-an=f(n),且 f(1)+f(2)+…+f(n)可求,则可用累加法求数列的通项 an.(3)在已知数列{an}中,满足=f(n),且 f(1)·f(2)·…·f(n)可求,则可用累乘法求数列的通项 an.(4)将递推关系进行变换,转化为常见数列(等差、等比数列). 二、数列与函数、不等式的综合问题数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出 Sn的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查最值问题,不等关系或恒成立问题.三、数列的实际应用用数列知识解相关的实际问题,关键是合理建立数学模型——数列模型,弄清所构造的数列是等差模型还是等比模型,它的首项是什么,项数是多少,然后转化为解数列问题.求解时,要明确目标,即搞清是求和,还是求通项,还是解递推关系问题,所求结论对应的是解方程问题,还是解不等式问题,还是最值问题,然后进行合理推算,得出实际问题的结果.【高考题型示例】题型一、 利用 Sn,an的关系式求 an例 1、已知等差数列{an}中,a2=2,a3+a5=8,数列{bn}中,b1=2,其前 n 项和 Sn满足:bn+1=Sn+2(n∈N*).(1)求数列{an},{bn}的通项公式;(2)设 cn=,求数列{cn}的前 n 项和 Tn.解 (1) a2=2,a3+a5=8, ∴2+d+2+3d=8,∴d=1,∴an=n(n∈N*). bn+1=Sn+2(n∈N*),①∴bn=Sn-1+2(n∈N*,n≥2).②1由①-②,得 bn+1-bn=Sn-Sn-1=bn(n∈N*,n≥2),∴bn+1=2bn(n∈N*,n≥2). b1=2,b2=2b1,∴{bn}是首项为 2,公比为 2 的等比数列,∴bn=2n(n∈N*).【感悟提升】给出 Sn与 an的递推关系,求 an,常用思路:一是利用 Sn-Sn-1=an(n≥2)转化为 an的递推关系,再求其通项公式;二是转化为 Sn的递推关系,先求出 Sn与 n 之间的关系,再求 an.【变式探究】已知...