电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学 考点一遍过 专题19 平面向量的基本定理及坐标表示(含解析)理试题VIP免费

高考数学 考点一遍过 专题19 平面向量的基本定理及坐标表示(含解析)理试题_第1页
1/15
高考数学 考点一遍过 专题19 平面向量的基本定理及坐标表示(含解析)理试题_第2页
2/15
高考数学 考点一遍过 专题19 平面向量的基本定理及坐标表示(含解析)理试题_第3页
3/15
考点19平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义.(2)掌握平面向量的正交分解及其坐标表示.(3)会用坐标表示平面向量的加法、减法与数乘运算.(4)理解用坐标表示的平面向量共线的条件.一、平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使1122aee.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.二、平面向量的坐标表示在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,对于平面内的一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得a=xi+yj,这样,平面内的任一向量a都可由x、y唯一确定,我们把(x,y)叫做向量a的坐标,记作a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标.三、平面向量的坐标运算1.向量坐标的求法(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.(2)设A(x1,y1),B(x2,y2),则AB�=(x2-x1,y2-y1).2.向量加法、减法、数乘向量及向量的模设a=(x1,y1),b=(x2,y2),则a+b=(x2+x1,y2+y1),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=2211+xy,|a+b|=221212(+)+(+)xxyy.3.平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),则a∥b⇔x1y2-x2y1=0.4.向量的夹角已知两个非零向量a和b,作OA�=a,OB�=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角.如果向量a与b的夹角是90°,我们说a与b垂直,记作a⊥b.考向一平面向量基本定理的应用1.应用平面向量基本定理表示向量的实质应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算,共线向量定理的应用起着至关重要的作用.当基底确定后,任一向量的表示都是唯一的.2.应用平面向量基本定理的关键点(1)平面向量基本定理中的基底必须是两个不共线的向量.(2)选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来.(3)强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等.3.用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.典例1在OAB△中,14OCOA�,12ODOB�,与交于点,设,,请以、为基底表示.所以14114mn,即,由2141mnmn,解得1737mn,所以1377OM�ab.1.如图,在OAB△中,为线段上一点,,且,则A.21,33xyB.12,33xyC.13,44xyD.31,44xy考向二平面向量的坐标运算1.向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.学.2.解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解,并注意方程思想的应用.牢记:向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.典例2已知,,为坐标原点,点C在∠AOB内,且,设,则的值为A.15B.13C.25D.23【答案】C【解析】 ,设,则,又,,根据向量的坐标运算知,所以32225xx.典例3已知(2,4)A,(3,1)B,(3,4)C,设AB�a,BC�b,CA�c.(1)求33abc;(2)求满足mnabc的实数m,n.2.已知平面向量(1,2)a,(2,)mb,且∥ab,则23abA.)10,5(B.)6,3(C.)8,4(D.)4,2(考向三向量共线(平行)的坐标表示1.利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a共线的向量时,可设所求向量为a(R),然后结合其他条件列出关于的方程,求出的值后代入a即可得到所求的向量.2.“利用两向量共线求参数.如果已知两向量共线...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学 考点一遍过 专题19 平面向量的基本定理及坐标表示(含解析)理试题

您可能关注的文档

文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部