毕 业 设 计(论 文)题目:泰勒公式及其在解题中的应用Title: Taylor formula and its application in solving problems学 院:理学院专 业:信息与计算科学姓 名:罗书云学 号:08102209指导老师:蔡奇嵘 二零一二年六月摘 要泰勒公式是数学分析中的重要组成部分,它的理论方法已成为讨论函数极限和估量误差等方面的不可或缺的工具,它集中体现了微积分“逼近法”的精髓,在近似计算方面有着得天独厚的优势,利用它可以将复杂问题简单化,可以将非线性问题化为线性问题,并且能满足相当高的精确度要求。它是微积分中值定理的推广,亦是应用高阶导数讨论函数性态的重要工具。泰勒公式在微积分的各个领域都有着重要的应用,而且泰勒公式“化繁为简”的功能在数学领域的讨论方面也起到了很大的作用。文章除了介绍了带佩亚诺型余项和拉格朗日型余项的泰勒公式在常用的近似计算、求极限、不等式的证明、推断函数极值上作求解证明外,特别地,对泰勒公式在函数凹凸性及拐点推断、级数和广义积分敛散性推断、行列式计算等问题的应用上做了详细系统的介绍,并且本文讨论了一种新的证明泰勒公式的方法,进一步将泰勒公式推广到更一般的形式。关键词:泰勒公式; 佩亚诺型余项; 拉格朗日型余项; 应用ABSTRACTTaylor's formula is an important part of mathematical analysis, the theory has become an indispensable tool of the research function limits and estimation error, which embodies the essence of calculus "approximation method", It have an unique advantage in the approximate calculation, it also can make complex issues into simplistic, non-linear problem into a linear problem, and can meet the very high accuracy requirements. It is the promotion of the mean value theorem in calculus, is also an important tool for the application of higher order derivatives of the functional state. Taylor formula in the calculus of the various fields have important applications, and the Taylor formula for complex simple "function in the mathematical field of research has played a significant role. This article in addition introdution Pe...