高二数学知识点总结大全(必修)第 1 章 空间几何体 11 .1 柱、锥、台、球的结构特征1. 2 空间几何体的三视图和直观图11 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下22 画三视图的原则: 长对齐、高对齐、宽相等33 直观图:斜二测画法44 斜二测画法的步骤:(1).平行于坐标轴的线依旧平行于坐标轴;(2).平行于 y 轴的线长度变半,平行于 x,z 轴的线长度不变;(3).画法要写好。5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积(一 )空间几何体的表面积1 棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积 3 圆锥的表面积4 圆台的表面积5 球的表面积(二)空间几何体的体积1 柱体的体积 2 锥体的体积 3 台体的体积 4 球体的体积 第二章 直线与平面的位置关系2.1 空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成 450,且横边画成邻边的 2 倍长(如图)(2)平面通常用希腊字母 α、β、γ 等表示,如平面 α、平面 β 等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面 AC、平面 ABCD 等。3 三个公理:(1)公理 1:假如一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A∈LB∈L => L αA∈αB∈α公理 1 作用:推断直线是否在平面内(2)公理 2:过不在一条直线上的三点,有且只有一个平面。符号表示为:A、B、C 三点不共线 => 有且只有一个平面 α,使 A∈α、B∈α、C∈α。公理 2 作用:确定一个平面的依据。(3)公理 3:假如两个不重合的平面有一个公共点,那么它们有且只DCBAαLA·αC·B·A·αP·αLβ有一条过该点的公共直线。符号表示为:P∈α∩β =>α∩β=L,且 P∈L公理 3 作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。2 公理 4:平行于同一条直线的两条直线互相平行。符号表示为:设 a、b、c 是三条直线a∥bc∥b强调:公理 4 实质上是说平行具有传递性,在平面、空间这个性质都适用。公理 4 作用:...