WORD资料可编辑专业整理分享高考二轮复习专项:圆锥曲线大题集1.如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.(Ⅰ)建立适当的坐标系,求动点M的轨迹C的方程.(Ⅱ)过点D且不与l1、l2垂直的直线l交(Ⅰ)中的轨迹C于E、F两点;另外平面上的点G、H满足:(R);AGADuuuruuur2;GEGFGHuuuruuuruuur0.GHEFuuuruuur求点G的横坐标的取值范围.2.设椭圆的中心是坐标原点,焦点在x轴上,离心率23e,已知点)3,0(P到这个椭圆上的点的最远距离是4,求这个椭圆的方程.3.已知椭圆)0(1:22221babyaxC的一条准线方程是,425x其左、右顶点分别BADMBNl2l1WORD资料可编辑专业整理分享是A、B;双曲线1:22222byaxC的一条渐近线方程为3x-5y=0.(Ⅰ)求椭圆C1的方程及双曲线C2的离心率;(Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若MPAM.求证:.0?ABMN4.椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为a.(1)用半焦距c表示椭圆的方程及tan;(2)若2