探索构建新课程理念下的课堂教学有效模式——“小组合作学习研究”之教案设计学科:数学教学内容:同底数幂的乘法教师姓名:丁剑英教学目标:理解同底数幂的乘法法则,运用同底数幂的乘法法则解决一些实际问题.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到般再到特殊的认知规律教学重难点:正确理解同底数幂的乘法法则以及适用范围课前准备:课件课时安排:一课时教学过程一、情景导入an的意义:an表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a叫做底数,n是指数.1.问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?2.学生分析:【1】3.得到结果:1012×103=×(10×10×10)==1015.4.通过观察可以发现1012、103这两个因数是同底数幂的形式,所以我们把像1012×103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法.二、自主学习1.学生动手:计算下列各式:(1)25×22(2)a3·a2(3)5m·5n(m、n都是正整数)【2】2.引导学生:注意观察计算前后底数和指数的关系,并能用自己的语言描述.3.得到结论:(1)特点:这三个式子都是底数相同的幂相乘.相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.(2)一般性结论:am·an表示同底数幂的乘法.根据幂的意义可得:am·an=·==am+nam·an=am+n(m、n都是正整数),即为:同底数幂相乘,底数不变,指数相加(3)分析:底数不变,指数要降一级运算,变为相加.底数不相同时,不能用此法则(两种情况除外)三、合作探究1.我们刚才讲到,只有底数相同时,才可以用此法则进行运算,但有两歌特例,这节课我们先涉及其中的一个:底数互为相反数。例:计算:(-a)2×a6练习:(-a)2×a4(-)3×62.当底数为一个多项式的时候,我们可以把这个多项式看成一个整体例:计算(a+b)2×(a+b)4×[-(a+b)]71四、交流反馈同底数幂的乘法的运算性质,进一步体会了幂的意义.了解了同底数幂乘法的运算性质.同底数幂的乘法的运算性质是底数不变,指数相加.注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即am·an=am+n(m、n是正整数).五、巩固新知例1:计算:(1)x2·x5(2)a·a6(3)xm·x3m+1例2:(1)2×24×23(2)am·an·ap【4】2