电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

八年级数学探索勾股定理北师大版VIP免费

八年级数学探索勾股定理北师大版_第1页
1/9
八年级数学探索勾股定理北师大版_第2页
2/9
八年级数学探索勾股定理北师大版_第3页
3/9
探索勾股定理一.教学目标与要求:1.经历探索勾股定理过程,发展合情推理能力,体会由特殊到一般及数形结合思想。2.了解利用拼图验证勾股定理的方法。3.了解勾股定理的历史,了解勾股定理的广泛应用,体会勾股定理的文化价值。二.重点与难点(一)重点1.了解并掌握勾股定理,知道利用拼图验证勾股定理的方法。2.运用所学勾股定理解决一些问题。(二)难点1.掌握好勾股定理并能运用勾股定理解决遇到的相关实际问题。2.掌握好勾股定理的逆定理。3.能熟练的区分勾股定理和勾股定理的逆定理。4.能把勾股定理和勾股定理的逆定理运用于实际,解决实际问题。三教材分析通过观察、归纳、猜想探索勾股定理及其逆定理,体验由特殊到一般地探索数学问题的方法;教材通过拼图的方法来验证勾股定理,尝试数形结合来解决数学问题的思想;通过运用勾股定理及其逆定理解决一些实际问题,学会从代数表示联想到有关的几何图形,再由几何图形联想到有关的代数表示,提高正确判定、合理推理的能力。四、学习资料1、关于勾股定理结论——如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方。注意:(1)由于我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,因此上结论被称为“勾股定理”。(2)勾股定理有着悠久的历史,古巴比伦和古中国人最早发现(看出)了这个关系,古希腊毕达哥拉斯学派首先证明了这个关系,因此,国际上称该结论为“毕达哥拉斯定理”(3)勾股定理是反映自然界基本规律的一条重要结论,它从边的角度进一步刻画了直角三角形的性质。它把三角形有一个直角的“形”的特征,转化为三边“数”的关系,体现了重要的数学思想-数形结合。(4)勾股定理不仅源于生活,同时又广泛应用于生活。2、关于勾股逆定理结论——如果直角三角形三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。(且∠C=90°)注意:(1)勾股定理是直角三角形的性质定理,而此结论是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,而且可以判定直角三角形中哪一个角为直角,这种利用计算的方法来证明的方法,体现了数形结合的思想。(2)事实上,当三角形三边为a、b、c,且c为最大边时,①若a2+b2=c2,则∠C为直角;②若c2>a2+b2,则∠C为钝角;③若c2

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

八年级数学探索勾股定理北师大版

您可能关注的文档

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群