电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(江苏专用)高考数学一轮复习 第六章 平面向量与复数 热点探究课3 三角函数与平面向量教师用书-人教版高三数学试题VIP免费

(江苏专用)高考数学一轮复习 第六章 平面向量与复数 热点探究课3 三角函数与平面向量教师用书-人教版高三数学试题_第1页
1/4
(江苏专用)高考数学一轮复习 第六章 平面向量与复数 热点探究课3 三角函数与平面向量教师用书-人教版高三数学试题_第2页
2/4
(江苏专用)高考数学一轮复习 第六章 平面向量与复数 热点探究课3 三角函数与平面向量教师用书-人教版高三数学试题_第3页
3/4
热点探究课(三)三角函数与平面向量[命题解读]从近五年江苏卷高考试题来看,解答题第1题主要考查三角函数与平面向量的问题.其命题方式主要体现在以下三个层面:一是平面向量与恒等变换的交汇问题;二是恒等变换与解三角形;三是平面向量与解三角形的综合问题.中档难度,在解题过程中应挖掘题目的隐含条件,注意公式的内在联系,灵活地正用、逆用、变形应用公式,并注重转化思想与数形结合思想的应用.热点1平面向量与恒等变换的交汇问题(答题模板)以平面向量为载体,使平面向量与恒等变换交汇命题,是高考的一个热点,主要考查平面向量的坐标运算、平面向量数量积及三角恒等变换的有关知识,求解的关键是恰当运用平面向量的运算法则建立三角函数的等量关系.(本小题满分14分)(2013·江苏高考)已知a=(cosα,sinα),b=(cosβ,sinβ),0<β<α<π.(1)若|a-b|=,求证:a⊥b;(2)设c=(0,1),若a+b=c,求α,β的值.[规范解答](1)证明:由题意得|a-b|2=2,2分即(a-b)2=a2-2a·b+b2=2.又因为a2=b2=|a|2=|b|2=1,所以2-2a·b=2,即a·b=0,故a⊥b.6分(2)因为a+b=(cosα+cosβ,sinα+sinβ)=(0,1),所以8分由此得,cosα=cos(π-β),由0<β<π,得0<π-β<π.10分又0<α<π,故α=π-β.代入sinα+sinβ=1,得sinα=sinβ=,12分而α>β,所以α=,β=.14分[答题模板]求平面向量与恒等变换交汇问题的一般步骤:第一步:(转化)将向量间的关系式化成三角函数式;第二步:(化简)借助三角恒等变换公式化简三角函数式;第三步:(求值)求三角函数式的值或求角或分析三角函数式的性质.第四步:(结论)明确表述结论.[温馨提示]1.在第(2)问的解法中,应用了方程的消元思想,其中诱导公式的灵活应用,起到了解题的关键作用.2.要关注题设条件中角的范围,其在解题中起到限定作用,即α=π-β.[对点训练1]已知向量a=(cosα,sinα),b=(cosβ,sinβ),|a-b|=.(1)求cos(α-β)的值;(2)若0<α<,-<β<0,且sinβ=-,求sinα的值.【导学号:62172176】[解](1) a=(cosα,sinα),b=(cosβ,sinβ),∴a2=1,b2=1,a·b=cosαcosβ+sinαsinβ=cos(α-β).又|a-b|=,∴|a-b|2=a2-2a·b+b2=.即2-2a·b=,∴a·b=.∴cos(α-β)=.6分(2) 0<α<,-<β<0,∴0<-β<,0<α-β<π.∴sin(α-β)===.∴cosβ===.10分∴sinα=sin[(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ=×+×=.14分热点2三角恒等变换与解三角形的综合问题以三角形为载体,三角恒等变换与解三角形交汇命题,是近几年高考试题的一大亮点,主要考查和、差、倍角公式以及正、余弦定理的综合应用,求解的关键是根据题目提供的信息,恰当地实施边角互化.在△ABC中,角A,B,C的对边分别为a,b,c,已知=.(1)求的值;(2)若角A是钝角,且c=3,求b的取值范围.[解](1)由题意及正弦定理得sinCcosB-2sinCcosA=2sinAcosC-sinBcosC,3分∴sinCcosB+sinBcosC=2(sinCcosA+sinAcosC).∴sin(B+C)=2sin(A+C). A+B+C=π,∴sinA=2sinB,∴=2.6分(2)由余弦定理得cosA===<0,∴b>.①10分 b+c>a,即b+3>2b,∴b<3,②由①②得b的范围是(,3).14分[规律方法]1.以三角形为载体,实质考查三角形中的边角转化,求解的关键是抓住边角间的关系,恰当选择正、余弦定理.2.解三角形常与三角变换交汇在一起(以解三角形的某一结论作为条件),此时应首先确定三角形的边角关系,然后灵活运用三角函数的和、差、倍角公式化简转化.[对点训练2]在△ABC中,内角A,B,C所对的边分别为a,b,c.已知tan=2.(1)求的值;(2)若B=,a=3,求△ABC的面积.[解](1)由tan=2,得tanA=,所以==.6分(2)由tanA=,A∈(0,π),得sinA=,cosA=.8分由a=3,B=及正弦定理=,得b=3.10分由sinC=sin(A+B)=sin,得sinC=.设△ABC的面积为S,则S=absinC=9.14分热点3平面向量、恒等变换与解三角形的综合应用以平面向量的运算为切入点,融恒等变换与解三角形于一体,综合考查三者间知识的内在联系,求解的关键是借助知识间的内联,实现问题的求...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(江苏专用)高考数学一轮复习 第六章 平面向量与复数 热点探究课3 三角函数与平面向量教师用书-人教版高三数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部