电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(江苏专用)高考数学大一轮复习 第四章 平面向量、数系的扩充与复数的引入 3 第3讲 平面向量的数量积及应用举例刷好题练能力 文-人教版高三全册数学试题VIP免费

(江苏专用)高考数学大一轮复习 第四章 平面向量、数系的扩充与复数的引入 3 第3讲 平面向量的数量积及应用举例刷好题练能力 文-人教版高三全册数学试题_第1页
1/4
(江苏专用)高考数学大一轮复习 第四章 平面向量、数系的扩充与复数的引入 3 第3讲 平面向量的数量积及应用举例刷好题练能力 文-人教版高三全册数学试题_第2页
2/4
(江苏专用)高考数学大一轮复习 第四章 平面向量、数系的扩充与复数的引入 3 第3讲 平面向量的数量积及应用举例刷好题练能力 文-人教版高三全册数学试题_第3页
3/4
第3讲平面向量的数量积及应用举例1.(2019·无锡质检)已知向量a=(2,1),b=(5,-3),则a·b的值为________.解析:因为a·b=(2,1)·(5,-3)=10-3=7.答案:72.等边三角形ABC的边长为1,BC=a,CA=b,AB=c,那么a·b+b·c+c·a=________.解析:由题意知|a|=|b|=|c|=1,且a与b的夹角为120°,b与c的夹角为120°,c与a的夹角也为120°.故a·b+b·c+c·a=-.答案:-3.已知|a|=3,|b|=4,且a与b不共线,若向量a+kb与a-kb垂直,则k=________.解析:因为(a+kb)⊥(a-kb),所以(a+kb)·(a-kb)=0,即|a|2-k2|b|2=0.又因为|a|=3,|b|=4,所以k2=,即k=±.答案:±4.(2019·南京市高三年级第三次模拟考试)在△ABC中,AB=3,AC=2,D为边BC上一点.若AB·AD=5,AC·AD=-,则AB·AC的值为________.解析:因为D为BC边上一点,所以可设AD=xAB+yAC,x+y=1,x>0,y>0①,则AB·AD=AB·(xAB+yAC)=9x+yAB·AC=5②,AC·AD=AC·(xAB+yAC)=xAB·AC+4y=-③,联立①②③,可得AB·AC=-3或,当AB·AC=时不满足x,y>0,舍去,故AB·AC=-3.答案:-35.已知平面向量a=(1,2),b=(4,2),c=ma+b(m∈R),且c与a的夹角等于c与b的夹角,则m=________.解析:由题意得:=⇒=⇒=⇒m=2.答案:26.(2019·南通市高三第一次调研测试)在△ABC中,若BC·BA+2AC·AB=CA·CB,则的值为________.解析:由BC·BA+2AC·AB=CA·CB,得2bc×+ac×=ab×,化简可得a=c.由正弦定理得==.答案:7.(2019·南京高三模拟)在凸四边形ABCD中,BD=2,且AC·BD=0,(AB+DC)·(BC+AD)=5,则四边形ABCD的面积为________.解析:(AB+DC)·(BC+AD)=(CB-CA+DC)·(DC-DB+AD)=(DB+AC)·(AC-DB)=AC2-DB2=5,即AC2-BD2=5.因为BD=2,所以AC=3,所以四边形ABCD的面积为AC×BD=×2×3=3.答案:38.(2019·徐州月考)平面向量a,b满足|a|=2,|a+b|=4,且向量a与向量a+b的夹角为,则|b|为________.解析:因为向量a与向量a+b的夹角为,所以cos===,解得a·b=0,即a⊥b.所以|a|2+|b|2=|a+b|2,从而解得,|b|=2.答案:29.在△ABC中,AB=10,AC=6,O为BC的垂直平分线上一点,则AO·BC=________.解析:取BC边的中点D,连结AD,则AO·BC=(AD+DO)·BC=AD·BC+DO·BC=AD·BC=(AB+AC)·(AC-AB)=(AC2-AB2)=(62-102)=-32.答案:-3210.(2019·南京市、盐城市高三年级第一次模拟考试)如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若A,B,C,D四点均位于图中的“晶格点”处,且A,B的位置如图所示,则AB·CD的最大值为________.解析:以B为坐标原点建立如图所示的平面直角坐标系.因为正六边形的边长均为1,所以B(0,0),A,当CD在AB方向上的投影最大时,AB·CD最大.C,D两点位于图中的“晶格点”处,由蜂巢结构图的对称性,取C(0,5),当D的坐标为(-,0)时,AB·CD最大,此时AB·CD=·(-,-5)=24.答案:2411.如图,在△OAB中,已知P为线段AB上的一点,OP=xOA+yOB.(1)如果BP=2PA,求x,y的值;(2)如果BP=3PA,|OA|=4,|OB|=2,且OA与OB的夹角为60°时,求OP·AB的值.解:(1)由BP=2PA,所以OP-OB=2(-OP+OA),即3OP=2OA+OB,所以x=,y=.(2)OP=OB+BP=OB+BA=OB+(OA-OB)=OA+OB,AB=OB-OA,所以OP·AB=·(OB-OA)=-OA2+OB2+OA·OB=-9.12.已知△ABC的角A、B、C所对的边分别是a、b、c,设向量m=(a,b),n=(sinB,sinA),p=(b-2,a-2).(1)若m∥n,求证:△ABC为等腰三角形;(2)若m⊥p,边长c=2,角C=,求△ABC的面积.解:(1)证明:因为m∥n,所以asinA=bsinB,即a·=b·,其中R是三角形ABC外接圆的半径,所以a=b.所以△ABC为等腰三角形.(2)由题意可知m·p=0,即a(b-2)+b(a-2)=0.所以a+b=ab.由余弦定理可知,4=a2+b2-ab=(a+b)2-3ab,即(ab)2-3ab-4=0,所以ab=4(舍去ab=-1),所以S=absinC=×4×sin=.1.已知a=(λ,2λ),b=(3λ,2),如果a与b的夹角为锐角,则λ的取值范围是________.解析:a与b的夹角为锐角...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(江苏专用)高考数学大一轮复习 第四章 平面向量、数系的扩充与复数的引入 3 第3讲 平面向量的数量积及应用举例刷好题练能力 文-人教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部