重庆交通大学学生实验报告实验课程名称《经济预测与决策》开课实验室B01机房学院2014级物流管理专业四班学生姓名陈立新学号631404090402开课时间2015至2016学年第二学期总成绩教师签名实验一一元线性回归预测一、实验目的通过实验掌握一元线性回归预测的数学模型、参数估计方法、误差分析和检验,掌握一元线性回归的点预测和区间预测。二、实验内容已知某市货物运输量Y(万吨),GDP(亿元,1980年不变价)1985年-1998年的样本观测值见下表:年份YGDP198518249161.69198618525171.07198718400184.07198816693194.75198915543197.86199015929208.55199118308221.06199217522246.92199321640276.8199423783316.38199524040363.52199624133415.51199725090465.78199824505509.101.用Excel直接计算一元线性回归模型的参数,要求写出计算过程。2.计算可决系数,并根据可决系数分析模型的优劣。3.计算F统计量,根据显著性水平α=0.05作F检验。4.假如2000年某市以1980为不变价国内生产总值为620亿元,求2000年货物运输量预测值及预测区间。三、实验步骤Yx(GDP)xi^2yi^2xi*yib^a^18249161.6926143.66333026001295068126.9541512596.2718525171.0729264.94343175625316907226.9541512596.2718400184.0733881.76338560000338688826.9541512596.2716693194.7537927.56278656249325096226.9541512596.2715543197.8639148.58241584849307533826.9541512596.2715929208.5543493.1253733041332199326.9541512596.2718308221.0648867.52335182864404716626.9541512596.2717522246.9260969.49307020484432653226.9541512596.2721640276.876618.24468289600598995226.9541512596.2723783316.38100096.3565631089752446626.9541512596.2724040363.52132146.8577921600873902126.9541512596.2724133415.51172648.65824016891002750326.9541512596.2725090465.782169516295081001168642026.9541512596.2724505509.1259182.86004950251247549626.9541512596.273E+053933.0612773405.855E+0983971489377.3581176347.720169280.93391238.64182275875997963yi^(yi-yi^)^2(yi^-Y’)^2r^2(yi-y’)16954.481675777103303720.7810023684754.517207.3117363028769059σ^2270132717557.727094436816567.929270603127844.917845.5913284545396261.5σ1207959717929.4156949695013828.91710.8652139591118217.5552374763806472.1F1797396618554.7560885.42604420.942.79505346172619251.782992152840499.477004340.320057.17250533912409.435216510221124.027070180912879.981306409422394.6427072184955370.11498795923795.98113580131581191571669425150.973717.18248242822422045926318.62328922637823126188046132823603.5E+07125263669160388387四、实验结果可决系数=0.781002yi=12596.27+26.95415xia^=12596.27b^=26.95F=42.79505F(0.05)=4.75F>F(0.05)方程显著σ=1710.865x=620的预测值29307.837t0.05(12)2.18预测区间24722.71833892.96五、实验小结通过实验,我掌握了一元线性回归预测的数学模型、参数估计方法、误差分析和检验,掌握了一元线性回归的点预测和区间预测。实验二多元线性回归预测一、实验目的通过实验掌握多元线性回归预测的数学模型、参数估计方法、误差分析和检验,掌握多元线性回归的点预测和区间预测。二、实验内容已知某服装公司的利润与销售额和经营费用有关,现有如下统计数据:时间(年)销售额X1(万元)经营费用X2(万元)利润Y(万元)1263.393.112.32275.493.916.03278.392.515.74296.789.221.25309.391.717.96315.896.518.87318.810015.48333103.919.09340.2102.520.010350.7102.518.411367.3102.121.812381.3101.524.113406.5101.225.614430.89930.01.根据上面的数据,用Excel中的数据分析直接进行回归。2.写出该二元线性回归模型。3.写出复相关系数、调整后的可决系数、标准误差,简单判别该预测模型的优劣。4.写出F统计量和斜率系数的t统计量,根据显著性水平α=0.05,作F检验和t检验。5.据估计,未来一年销售额可达460万元,经营费用可控制在100万元,试预测未来一年的利润。...