1对于高中生来说学好高中数学是重中之重,但是学好高中数学的解析几何知识更是不能马虎,方便大家学习和复习,本文就高中数学解析几何知识点及高考核心考点做了以下归纳:······?高中数学解析几何高考核心考点1、准确理解(m)基本概念(如直线的倾斜角、斜率、距离、截距等)2、熟练掌握(s)基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等)3、熟练掌握(c)求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等)4、在解决直(g)线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算5、了解线性(01)规划的意义及简单应用6、熟悉圆锥曲线中基本量的计算7、掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等)8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题高中数学解析几何需掌握知识点1.平行与垂直若直线l1和l2有斜截式方程l1:y=k1x+b1,l2:y=k2x+b2,则:(1)直线l1∥l2的充要条件是:k1=k2且b1≠b2(2)直线l1⊥l2的充要条件是:k1·k2=-12.三种距离(1)两点间的距离平面上的两点P1(x1,y1),P2(x2,y2)间的距离公式|P1P2|=x1-x22+y1-y22.特别地,原点(0,0)与任意一点P(x,y)的距离|OP|=x2+y2.(2)点到直线的距离:点P0(x0,y0)到直线l:Ax+By+C=0的距离d=|Ax0+By0+C|A2+B2(3)两条平行线的距离两条平行线Ax+By+C1=0与Ax+By+C2=0间的距离d=|C1-C2|A2+B23、圆的方程的两种形式①.圆的标准方程(x-a)2+(y-b)2=r2,方程表示圆心为(a,b),半径为r的圆.②.圆的一般方程对于方程x2+y2+Dx+Ey+F=02(1)当D2+E2-4F>0时,表示圆心为③-D2,-E2,半径为12D2+E2-4F的圆;(2)当D2+E2-4F=0时,表示一个点-D2,-E2;(3)当D2+E2-4F<0时,它不表示任何图形.4、直线与圆的位置关系①.直线与圆的位置关系有三种:相离、相切、相交.判断直线与圆的位置关系常见的有:几何法:利用圆心到直线的距离d和圆半径r的大小关系d<r?相交;d=r?相切;d>r?相离②.直线与圆相交直线与圆相交时,若l为弦长,d为弦心距,r为半径,则有r2=d2+l22,即l=2r2-d2,求弦长或已知弦长求解问题,一般用此公式.5、两圆位置关系的判断两圆(x-a1)2+(y-b1)2=r21(r>0),(x-a2)2+(y-b2)2=r22(r2>0)的圆心距为d,则1.d>r1+r2?两圆外离;2.d=r1+r2?两圆外切;3.|r1-r2|<d<r1+r2(r1≠r2)?两圆相交_;4.d=|r1-r2|(r1≠r2)?两圆内切;5.0≤d<|r1-r2|(r1≠r2)?两圆内含6.椭圆一、椭圆的定义和方程1.椭圆的定义平面内到两定点F1、F2的距离的和等于常数2a(大于|F1F2|=2c)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦点.定义中特别要注意条件2a>2c,否则轨迹不是椭圆;当2a=2c时,动点的轨迹是线段;当2a<2c时,动点的轨迹不存在。2.椭圆的方程(1)焦点在x轴上的椭圆的标准方程:x2a2+y2b2=1(a>b>0).(2)焦点在y轴上的椭圆的标准方程:y2a2+x2b2=1(a>b>0).二、椭圆的简单几何性质(a2=b2+c2)标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)3图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:x轴,y轴对称中心:坐标原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)性质轴长轴A1A2的长为2a短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca∈(0,1)a,b,c的关系c2=a2-b247.双曲选一、双曲线的定义平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|且不等于零)的点的轨迹叫做双曲5线.两个定点F1、F2叫做双曲线的焦点,两焦点的距离|F1F2|叫做双曲线的焦距.二、双曲线的标准方程和几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质范围④x≥a或x≤-a⑤_y≥a或y≤-a对称性对称轴:x轴、y轴对称中心:坐标原点对称轴:x轴,y轴对称中心:坐标原点顶点顶点坐标:A1(-a...