4.3用一元一次方程解决问题【教学目标】知识与技能:能用一元一次方程解决简单的实际问题,包括列方程、解方程,并能根据实际问题的意义检验所得结果是否合理提高分析问题和解决问题的能力.过程与方法:经历“问题情境—建立数学模型—解释、应用与拓展”的过程,体会数学的应用价值.情感态度与价值观:在积极参与教学活动的过程中,初步体验一元一次方程的使用价值,形成实事求是的态度和独立思考的习惯.【重难点】重点:通过分析问题中的基本等量关系,建立方程解决问题.难点:从复杂问题中挖掘条件,由“未知”向“已知”转化,寻找相等关系.【教学过程】活动一:创设情境,导入新课解方程的一般步骤:步骤方法注意去分母在方程两边都乘不要漏乘不含分母的项,分子是一个整体,去分母后应加括号去括号先去,再去,最后带着符号计算,不要漏乘移项把项都移到方程的一边,其他项移到另一边移项要________合并把方程两边分别合并,化成ax=b的形式合并只是系数相加,字母及指数不变系数化为1在方程两边都除以未知数的系数,得到方程的解x=分子、分母要________由学生思考后口述,教师投影展示答案.活动二:实践探究,交流新知【探究一】产品配套问题投影仪出示问题:某车间有工人660名,生产一种由一个螺栓和两个螺母组成的配套产品,每人每天平均生产螺栓14个或螺母20个.如果你是这个车间的车间主任,你应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?学生思考并讨论,教师引导:找出此题中的等量关系:生产的螺栓数×2=生产的螺母数,把相关的代数式代入即可列方程.教师板书解题过程:解:设分配x人生产螺栓,则有(660-x)人生产螺母,根据题意得14x×2=(660-x)×20,解得x=275.所以660-x=385.答:应分配385人生产螺母,275人生产螺栓.教师总结列一元一次方程解应用题的一般步骤:审清题意、设未知数、列出方程、解方程、写出答案.【探究二】工程问题投影仪出示问题:一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?学生思考并讨论,教师引导:首先设乙队还需x天才能完成,由题意可得等量关系:甲队干三天的工作量+乙队干(x+3)天的工作量=1,根据等量关系列出方程,求解即可.教师板书解题过程:解:设乙队还需x天才能完成,由题意得19×3+124(3+x)=1,解得x=13.答:乙队还需13天才能完成.师生共同归纳总结:找到等量关系是解决问题的关键.此题主要考查的等量关系为:工作效率×工作时间=工作总量,当题中没有一些必须的量时,为了简便,应设其为1.【探究三】销售问题投影仪出示问题:某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?学生先尝试利用上面有关商品盈亏的数量关系进行估算,再小组内讨论用方程思想求解验证估算结果.师生合作探究解题思路:卖这两件衣服总的是盈利还是亏损,取决于这两件衣服售价多少,进价多少.若售价大于进价,就盈利,反之就亏损.现已知这两件衣服总售价为60×2=120(元),要求出这两件衣服的进价.假设一件商品地进价是40元,如果卖出后盈利25%,那么商品的利润是0.25×40.如果卖出后亏损25%,商品的利润是-0.25×40.教师板书解题过程.解:设盈利25%的那件衣服的进价是元,它的商品利润就是0.25x.根据进价与利润的和等于售价,列出方程:.解得.类似地,可以设另一件衣服的进价为元,它的利润是元,列出方程.解得.两件衣服的总进价是元,而两件衣服的总售价是60+60=120元,进价大于售价,由此可知卖这两件衣服总共亏损8元.【探究四】储蓄问题投影仪出示问题:假设某银行一年定期储蓄的年利率为3.25%,小明取出一年到期的本金及利息1032.5元,则小明存入银行的钱为多少元?学生思考,教师引导,请学生代表板书解题过程:解:设小明存入银行的钱为x元,根据题意,得3.25%x+x=1032.5,解得x=1000.答:小明存入银行的钱为1000元.师生共同总结:(1)利息=本金×利率×期数;(2)本息和(本利)=本金+利...