证明课题12.2证明(1)课型新授课教学目标1.了解证明的基本步骤和书写格式.2.能从“同位角相等,两直线平行”这个基本事实出发,证明平行线的判定定理,并能简单应用这些结论.重点能从基本事实出发,证明平行线的判定定理,并能简单应用这些结论.难点培养学生辨证分析问题的能力和逆向思维的能力教法引导探究、自主探究教学过程教学内容个案调整教师主导活动学生主体活动一、、情境创设:一个数学结论的正确性如何确认呢?其实数学家们早就遇到了这样的问题,人类对数学命题进行证明的研究已有两千多年的历史了.公元前3世纪,古希腊数学家欧几里得写出了举世闻名的巨著《原本》,在这本书里,他挑选了一些基本定义和基本事实作为证实其他命题的出发点,推导出了400条定理.二、、探索活动:1.本教材选用下列真命题作为基本事实:同位角相等,两直线平行.两直线平行,同位角相等.两边和它们的夹角对应相等的两个三角形全等.两角和它们的夹边对应相等的两个三角形全等.三边对应相等的两个三角形全等.此外,等式的有关性质和不等式的有关性质也都看作基本事实.2.探索“同角的补角相等”三、、交流与思考用推理的方法证实真命题的过程叫做证明.经过证明的真命题称为定理.已经证明的定理也可以作为以后推理的依据思考:如何证明“同位角相等”呢?证明与图形有关的命题的步骤:(1)根据命题,画出图形;(2)根据命题,结合图形,写出已知、求证.已知部分是已知事项(即命题的条件),求证部分是论证的事项(即命题的结论);(3)写出证明过程.教学过程教学内容个案调整教师主导活动学生主体活动三、例题讲解例1、证明:内错角相等,两直线平行.定理:内错角相等,两直线平行.尝试:证明:“同旁内角互补,两直线平行”.(1)根据命题,画出图形;(2)根据所画图形,写出已知、求证;(3)说说你的证明思路.例2、如何证明“对顶角相等”(1)仿照问题1提问师生共同合作完成推理:四、巩固练习:1、课本P136页练习题2、已知:如图,直线a与直线b被直线c所截,∠1=∠2,求证:a∥b.3、课本P139习题11.3第1、2(在课本上填写)、5题4、课外作业《数学补充题》P84~8511.3证明(1)五、课中总结:本节课你有什么收获?板书设计当堂作业课外作业教学札记