第1页成都七中初中七年级(上)旋转动角问题专题(适用于七年级上学期)〖解题策略〗角是一种基本的几何图形,凡是由直线组成的图形都出现角.角既可以看成有公共端点的两条射线组成的图形,也可以看成是一条射线绕着端点从一个位置旋转到另一个位置所成的图形.解与角有关的问题常用到以下知识与方法:1.角平分线的应用,如双角平分线模型;2.多个角间的数量关系及其等量代换;3.引入字母表示比例角度、动角,用方程的观点来进行角的计算;4.角的边位置不定时,需要分类讨论.〖典型例题〗已知∠AOB=150°,OC为∠AOB内部的一条射线,∠BOC=60°.(1)如图1,若OE平分∠AOB,OD为∠BOC内部的一条射线,∠COD=∠BOD,求∠DOE的度数;(2)如图2,若射线OE绕着O点从OA开始以15度/秒的速度顺时针旋转至OB结束、OF绕着O点从OB开始以5度秒的速度逆时针旋转至OA结束,运动时间为t秒,当∠EOC=∠FOC时,求t的值:(3)若射线OM绕着O点从OA开始以15度秒的速度逆时针旋转至OB结束,在旋转过程中,ON平分∠AOM,试问2∠BON一∠BOM在某时间段内是否为定值,若不是,请说明理由;若是请补全图形,求出这个定值并写出t所在的时间段.(本题中的角均为大于0°且小于180°的角)版权所有解:(1) ∠AOB=150°,OE平分∠AOB,∴∠EOB=∠AOB=75°, ∠BOC=60°,∠COD=∠BOD,∴∠BOD=40°,∠COD=20°,∴∠EOD=∠EOB﹣∠DOB=75°﹣40°=35°.(2)当OE在∠AOC内部时, ∠EOC=∠FOC,∴90﹣15t=60﹣5t,第2页∴t=3.当OE与OF重合时,15t+5t=150°,t=7.5.综上所述,当∠EOC=∠FOC时,t=3s或7.5s.(3)2∠BON﹣∠BOM的值为定值(4<t<12).理由: ∠AOM=15t.∠AON=∠MON=7.5t,∠BON=210°﹣7.5t,∠BOM=210°﹣15t,∴2∠BON一∠BOM=2(210°﹣7.5t)﹣(210°﹣15t)=210°(4<t<12).〖同步练习〗一.填空题1.计算:53°40′30″+75°57′28″=.2.同学们,闹钟都见过吧!它的时针和分针如同兄弟俩在赛跑,可你是否知道时针每分钟走多少度?分针每分针走多少度?当你弄清楚这个问题后,你能解决很多关于闹钟有趣的问题:(1)三点整时时针与分针所夹的角是度.(2)7点25分时针与分针所夹的角是度.(3)一昼夜(0点到24点)时针与分针互相垂直的次数有多少次?3.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.如图2,若∠MPN=75°,且射线PQ绕点P从PN位置开始,以每秒15°的速度逆时针旋转,射线PM同时绕点P以每秒5°的速度逆时针旋转,当PQ与PN成180°时,PQ与PM同时停止旋转,设旋转的时间为t秒.当射线PQ是∠MPN的“巧分线”时,t的值为.第3页4.如图1所示∠AOB的纸片,OC平分∠AOB,如图2把∠AOB沿OC对折成∠COB(OA与OB重合),从O点引一条射线OE,使∠BOE=∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为76°,则∠AOB=°.二.解答题5.如图,∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5°和每秒3°的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30°?6.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=100°,则∠DOE=;若∠AOC=120°,则∠DOE=;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣2∠BOE=4∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.第4页7.一副三角板ABC、DEF,如图(1)放置,(∠D=30°、∠BAC=45°)(1)求∠DBA的度数.(2)若三角板DBE绕B点逆时针旋转,(如图2)在旋转过程中BM、BN分别平分∠DBA、∠EBC,则∠MBN如何变化?(3)若三角板BDE绕B点逆时针旋转到如图(3)时,其它条件不变,则(2)的结论是否变化?8.如图,直线EF与MN相交于点O,∠MOE=30°,将一直角三角尺的直角顶点与O重合,直角边OA与MN重合,OB在∠NOE内部.操作:将三角尺绕点O以每秒3...