电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(完整word版)第三章欧拉图和哈密顿图VIP免费

(完整word版)第三章欧拉图和哈密顿图_第1页
1/16
(完整word版)第三章欧拉图和哈密顿图_第2页
2/16
(完整word版)第三章欧拉图和哈密顿图_第3页
3/16
1第三章欧拉图与哈密顿图(七桥问题与一笔画,欧拉图与哈密顿图)教学安排的说明章节题目:§3.1环路;§3.2欧拉图;§3.3哈密顿图学时分配:共2课时本章教学目的与要求:认识七桥问题的实质,理解一笔画问题的解决方法,会正确理解关于欧拉图和哈密顿图的判断定理,并进行识别.其它:由于欧拉图与一笔画问题密切相关,因此本章首先从一笔画问题讲起,章节内容与教材有所不同。2课堂教学方案课程名称:§3.1环路;§3.2欧拉图;§3.3哈密顿图授课时数:2学时授课类型:理论课教学方法与手段:讲授法教学目的与要求:认识七桥问题的实质,理解一笔画问题的解决方法,会正确理解关于欧拉图和哈密顿图的判断定理,并进行识别.教学重点、难点:(1)理解环路的概念;(2)掌握欧拉图存在的充分必要条件;(3)理解哈密顿图的一些充分和必要条件;教学内容:看图1,有点像“回”字,能不能从某一点出发,不重复地一笔把它画出来?这就是中国民间古老的一笔画游戏,而这个图形实际上也是来源于生活。中国古代量米用的“斗”?上下都是四方的,底小口大,从上往下看就是这样的图形。这类“一笔画”问题中最著名的当属“哥尼斯堡七桥问题”了。一、问题的提出图1哥尼斯堡七桥问题。18世纪,哥尼斯堡为东普鲁士的首府,有一条横贯全市的普雷格尔河,河中的两个岛与两岸用七座桥联结起来,见图2(1),当时那里的居民热衷于一个难题:游人怎样不重复地走遍七桥,最后回到出发点。1735年,一群执着好奇的大学生写信请教当时正在圣彼得堡科学院担任教授的著名数学家欧拉。欧拉通过数学抽象成功地解决了这一问题。欧拉发现欧几里得几何并不适用于这个问题,因为桥不涉及“大小”,也不能用“量化计算”来解决。相反地,这问题属于提出的“位置几何”。欧拉想到,岛与河岸陆地仅是桥梁的连接地点和通往地点,桥仅是从一地通往另一地的路径,一次能否不重复走遍七桥与河岸陆地大小是没有3本质联系的,与桥的宽窄也是没有关系的。所以,相对问题而言,可舍弃之,而仅考虑与问题有密切联系的本质特征:岛和岸地可以是仅有位置而没有大小的“点”,桥梁可以是仅有连接作用而没有宽窄的连接两点的线,那么可以把这四处地点用A,B,C,D四个点来表示,同时将七座桥表示成连结其中两点的七条线,就得到这样一张图.于是,欧拉建立了一个数学模型,一个人不重复地走遍所有的七座桥,就相当于从图中某一点出发,不重复地一笔画出图来.这样,“七桥问题”就转化为“一笔画”问题了。欧拉注意到,如果一个图能一笔画成,那么一定有一个起点开始画,也有一个终点。图上其它的点是“过路点”——画的时候要经过它。这些点有什么特征呢?先来看看“过路点”,它应该是“有进有出”的点,有一条边进这点,那么就要有一条边出这点,不可能是有进无出,如果有进无出,它就是终点,也不可能有出无进,如果有出无进,它就是起点。因此,在“过路点”进出的边总数应该是偶数。如果起点和终点是同一点,那么它也是属于“有进有出”的点,因此必须连着偶数条边,这样图上所有点都连偶数条边。如果起点和终点不是同一点,那么这两点连有奇数条边,这也是图中仅有的连着奇数条边的点。现在对照七桥问题的图,B点连有3条边,A点连有5条边,C点D点各连3条边,哥尼斯堡七桥问题就变成了图2(2)中,是否存在经过每条边一次且仅一次,经过所有的顶点的闭链问题了。所以欧拉得出的结论是这个图肯定不能一笔画成,也就是说要想不重复的走遍这七座桥是不可能的。1736年瑞士数学家欧拉(Euler)发表了图论的第一篇论文“哥尼斯堡七桥问题”。欧拉在论文中指出,这样的闭链是不存在的。图24欧拉解决问题的关键是两步,先从实际问题中抽象出形式结构,再对形式结构进一步分析,抽象出其本质数量特征,由此得出判别准则,问题获得答案。哥尼斯堡七桥问题的解决远远超出了它的娱乐价值,欧拉用了最简单的图形——点和线,把一个实际问题抽象成数学问题,巧妙地彻底解决了“七桥问题”。这充分显示了数学抽象的形式化和量化特征。由此提出的新思想开辟了数学的一个新的领域——图论,同时也为拓扑学的研究提供了一个初等的例子。此后许多著...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(完整word版)第三章欧拉图和哈密顿图

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部